Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563154

RESUMO

Pulmonary hypertension in sickle cell disease is an independent predictor of mortality, yet the pathogenesis of pulmonary vascular disease in chronic hemolytic disorders remains incompletely understood and treatment options are limited primarily to supportive care. The release of extracellular hemoglobin has been implicated in the development of pulmonary hypertension, and in this study we explored the direct effects of hemin, the oxidized moiety of heme, on the pulmonary artery endothelium. We found that low dose hemin exposure leads to significantly increased endothelial cell proliferation, migration, and cytokine release as markers of endothelial dysfunction. Protein expression changes in our pulmonary artery endothelial cells showed upregulation of mesenchymal markers after hemin treatment in conjunction with a decrease in endothelial markers. Endothelial to mesenchymal transition (EndoMT) resulting from hemin exposure was further confirmed by showing upregulation of the transcription factors SNAI1 and SLUG, known to regulate EndoMT. Lastly, given the endothelial dysfunction and phenotypic transition observed, the endothelial cytoskeleton was considered a potential novel target. Inhibiting myosin light chain kinase, to prevent phosphorylation of myosin light chain and cytoskeletal contraction, attenuated hemin-induced endothelial hyper-proliferation, migration, and cytokine release. The findings in this study implicate hemin as a key inducer of endothelial dysfunction through EndoMT, which may play an important role in pulmonary vascular remodeling during the development of pulmonary hypertension in chronic hemolytic states.


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Citocinas/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Transição Epitelial-Mesenquimal , Hemina/metabolismo , Hemólise , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Doenças Vasculares/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362426

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction, uncontrolled proliferation and migration of pulmonary arterial endothelial cells leading to increased pulmonary vascular resistance resulting in great morbidity and poor survival. Bone morphogenetic protein receptor II (BMPR2) plays an important role in the pathogenesis of PAH as the most common genetic mutation. Non-muscle myosin light chain kinase (nmMLCK) is an essential component of the cellular cytoskeleton and recent studies have shown that increased nmMLCK activity regulates biological processes in various pulmonary diseases such as asthma and acute lung injury. In this study, we aimed to discover the role of nmMLCK in the proliferation and migration of pulmonary arterial endothelial cells (HPAECs) in the pathogenesis of PAH. We used two cellular models relevant to the pathobiology of PAH including BMPR2 silenced and vascular endothelial growth factor (VEGF) stimulated HPAECs. Both models demonstrated an increase in nmMLCK activity along with a robust increase in cellular proliferation, inflammation, and cellular migration. The upregulated nmMLCK activity was also associated with increased ERK expression pointing towards a potential integral cytoplasmic interaction. Mechanistically, we confirmed that when nmMLCK is inhibited by MLCK selective inhibitor (ML-7), proliferation and migration are attenuated. In conclusion, our results demonstrate that nmMLCK upregulation in association with increased ERK expression may contribute to the pathogenesis of PAHby stimulating cellular proliferation and migration.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Animais , Hipertensão Pulmonar/metabolismo , Remodelação Vascular/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Modelos Animais de Doenças
3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986517

RESUMO

Pulmonary hypertension (PH) frequently complicates chronic lung disease and is associated with high morbidity and poor outcomes. Individuals with interstitial lung disease and chronic obstructive pulmonary disease develop PH due to structural changes associated with the destruction of lung parenchyma and vasculature with concurrent vasoconstriction and pulmonary vascular remodeling similar to what is observed in idiopathic pulmonary arterial hypertension (PAH). Treatment for PH due to chronic lung disease is largely supportive and therapies specific to PAH have had minimal success in this population with exception of the recently FDA-approved inhaled prostacyclin analogue treprostinil. Given the significant disease burden of PH due to chronic lung diseases and its associated mortality, a great need exists for improved understanding of molecular mechanisms leading to vascular remodeling in this population. This review will discuss the current understanding of pathophysiology and emerging therapeutic targets and potential pharmaceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA