Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851183

RESUMO

Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.

2.
Endocrinology ; 163(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255139

RESUMO

Inhibins are members of the transforming growth factor-ß family, composed of a common α-subunit disulfide-linked to 1 of 2 ß-subunits (ßA in inhibin A or ßB in inhibin B). Gonadal-derived inhibin A and B act in an endocrine manner to suppress the synthesis of follicle-stimulating hormone (FSH) by pituitary gonadotrope cells. Roles for inhibins beyond the pituitary, however, have proven difficult to delineate because deletion of the inhibin α-subunit gene (Inha) results in unconstrained expression of activin A and activin B (homodimers of inhibin ß-subunits), which contribute to gonadal tumorigenesis and lethal cachectic wasting. Here, we generated mice with a single point mutation (Arg233Ala) in Inha that prevents proteolytic processing and the formation of bioactive inhibin. In vitro, this mutation blocked inhibin maturation and bioactivity, without perturbing activin production. Serum FSH levels were elevated 2- to 3-fold in InhaR233A/R233A mice due to the loss of negative feedback from inhibins, but no pathological increase in circulating activins was observed. While inactivation of inhibin A and B had no discernible effect on male reproduction, female InhaR233A/R233A mice had increased FSH-dependent follicle development and enhanced natural ovulation rates. Nevertheless, inhibin inactivation resulted in significant embryo-fetal resorptions and severe subfertility and was associated with disrupted maternal ovarian function. Intriguingly, heterozygous Inha+/R233A females had significantly enhanced fecundity, relative to wild-type littermates. These studies have revealed novel effects of inhibins in the establishment and maintenance of pregnancy and demonstrated that partial inactivation of inhibin A/B is an attractive approach for enhancing female fertility.


Assuntos
Gonadotrofos , Inibinas , Ativinas/metabolismo , Animais , Feminino , Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/metabolismo , Inibinas/genética , Inibinas/metabolismo , Masculino , Camundongos , Ovário/metabolismo , Hipófise/metabolismo , Gravidez
3.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022746

RESUMO

Testicular-derived inhibin B (α/ß B dimers) acts in an endocrine manner to suppress pituitary production of follicle-stimulating hormone (FSH), by blocking the actions of activins (ß A/B/ß A/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (ß B-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate InhbbM364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male InhbbM364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area in InhbbM364T/M364T males compared to wildtype males. Despite this testis phenotype, male InhbbM364T/M364T mutant mice retained normal fertility. Serum hormone analyses, however, indicated that the InhbbM364T variant resulted in reduced circulating levels of activin B but did not affect FSH production. We also examined the effect of this p.Met360Thr and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man on inhibin B and activin B in vitro biosynthesis. We found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.


Assuntos
Infertilidade Masculina/genética , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/fisiologia , Mutação , Contagem de Espermatozoides , Testículo/fisiopatologia , Ativinas/biossíntese , Ativinas/genética , Animais , Azoospermia/genética , Proteína 9 Associada à CRISPR , Hormônio Foliculoestimulante/metabolismo , Humanos , Infertilidade Masculina/fisiopatologia , Inibinas/biossíntese , Inibinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células de Sertoli , Espermatogênese/genética , Espermatogônias , Testículo/química , Testículo/citologia
4.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36016100

RESUMO

Adjuvants and delivery systems are essential components of vaccines to increase immunogenicity against target antigens, particularly for peptide epitopes (poor immunogens). Emulsions, nanoparticles, and liposomes are commonly used as a delivery system for peptide-based vaccines. A Poly(hydrophobic amino acids) delivery system was previously conjugated to Group A Streptococcus (GAS)-derived peptide epitopes, allowing the conjugates to self-assemble into nanoparticles with self adjuvanting ability. Their hydrophobic amino acid tail also serves as an anchoring moiety for the peptide epitope, enabling it to be integrated into the liposome bilayer, to further boost the immunological responses. Polyleucine-based conjugates were anchored to cationic liposomes using the film hydration method and administered to mice subcutaneously. The polyleucine-peptide conjugate, its liposomal formulation, and simple liposomal encapsulation of GAS peptide epitope induced mucosal (saliva IgG) and systemic (serum IgG, IgG1 and IgG2c) immunity in mice. Polyleucine acted as a potent liposome anchoring portion, which stimulated the production of highly opsonic antibodies. The absence of polyleucine in the liposomal formulation (encapsulated GAS peptide) induced high levels of antibody titers, but with poor opsonic ability against GAS bacteria. However, the liposomal formulation of the conjugated vaccine was no more effective than conjugates alone self-assembled into nanoparticles.

5.
Front Physiol ; 11: 560225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250771

RESUMO

Inhibition of myostatin- and activin-mediated SMAD2/3 signaling using ligand traps, such as soluble receptors, ligand-targeting propeptides and antibodies, or follistatin can increase skeletal muscle mass in healthy mice and ameliorate wasting in models of cancer cachexia and muscular dystrophy. However, clinical translation of these extracellular approaches targeting myostatin and activin has been hindered by the challenges of achieving efficacy without potential effects in other tissues. Toward the goal of developing tissue-specific myostatin/activin interventions, we explored the ability of transmembrane prostate androgen-induced (TMEPAI), an inhibitor of transforming growth factor-ß (TGF-ß1)-mediated SMAD2/3 signaling, to promote growth, and counter atrophy, in skeletal muscle. In this study, we show that TMEPAI can block activin A, activin B, myostatin and GDF-11 activity in vitro. To determine the physiological significance of TMEPAI, we employed Adeno-associated viral vector (AAV) delivery of a TMEPAI expression cassette to the muscles of healthy mice, which increased mass by as much as 30%, due to hypertrophy of muscle fibers. To demonstrate that TMEPAI mediates its effects via inhibition of the SMAD2/3 pathway, tibialis anterior (TA) muscles of mice were co-injected with AAV vectors expressing activin A and TMEPAI. In this setting, TMEPAI blocked skeletal muscle wasting driven by activin-induced phosphorylation of SMAD3. In a model of cancer cachexia associated with elevated circulating activin A, delivery of AAV:TMEPAI into TA muscles of mice bearing C26 colon tumors ameliorated the muscle atrophy normally associated with cancer progression. Collectively, the findings indicate that muscle-directed TMEPAI gene delivery can inactivate the activin/myostatin-SMAD3 pathway to positively regulate muscle mass in healthy settings and models of disease.

6.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569368

RESUMO

Ovarian-derived inhibin A and inhibin B (heterodimers of common α- and differing ß-subunits) are secreted throughout the menstrual cycle in a discordant pattern, with smaller follicles producing inhibin B, whereas the dominant follicle and corpus luteum produce inhibin A. The classical function for endocrine inhibins is to block signalling by activins (homodimers of ß-subunits) in gonadotrope cells of the anterior pituitary and, thereby, inhibit the synthesis of FSH. Whether inhibin A and inhibin B have additional physiological functions is unknown, primarily because producing sufficient quantities of purified inhibins, in the absence of contaminating activins, for preclinical studies has proven extremely difficult. Here, we describe novel methodology to enhance inhibin A and inhibin B activity and to produce these ligands free of contaminating activins. Using computational modeling and targeted mutagenesis, we identified a point mutation in the activin ß A-subunit, A347H, which completely disrupted activin dimerization and activity. Importantly, this ß A-subunit mutation had minimal effect on inhibin A bioactivity. Mutation of the corresponding residue in the inhibin ß B-subunit, G329E, similarly disrupted activin B synthesis/activity without affecting inhibin B production. Subsequently, we enhanced inhibin A potency by modifying the binding site for its co-receptor, betaglycan. Introducing a point mutation into the α-subunit (S344I) increased inhibin A potency ~12-fold. This study has identified a means to eliminate activin A/B interference during inhibin A/B production, and has facilitated the generation of potent inhibin A and inhibin B agonists for physiological exploration.


Assuntos
Inibinas , Engenharia de Proteínas/métodos , Feminino , Células HEK293 , Humanos , Inibinas/genética , Inibinas/isolamento & purificação , Inibinas/metabolismo , Inibinas/farmacologia , Proteínas de Membrana , Modelos Moleculares , Mutagênese/fisiologia , Ovário/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Multimerização Proteica/genética , Estrutura Quaternária de Proteína/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , Proteínas de Saccharomyces cerevisiae , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA