Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
J Physiol ; 601(11): 2165-2188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814134

RESUMO

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Assuntos
Cinurenina , Triptofano , Adulto Jovem , Humanos , Idoso , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido Cinurênico , NAD/metabolismo , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
2.
Circulation ; 143(2): 145-159, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106031

RESUMO

BACKGROUND: Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function. METHODS: To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation. We then performed lipidomics and identified an increase in the lipokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME). We utilized a mouse model with sustained overexpression of 12,13-diHOME and investigated the role of 12,13-diHOME in a nitric oxide synthase type 1 deficient (NOS1-/-) mouse and in isolated cardiomyocytes to determine effects on function and respiration. We also investigated 12,13-diHOME in a cohort of human patients with heart disease. RESULTS: Here, we determined that transplantation of BAT (+BAT) improves cardiac function via the release of the lipokine 12,13-diHOME. Sustained overexpression of 12,13-diHOME using tissue nanotransfection negated the deleterious effects of a high-fat diet on cardiac function and remodeling, and acute injection of 12,13-diHOME increased cardiac hemodynamics via direct effects on the cardiomyocyte. Furthermore, incubation of cardiomyocytes with 12,13-diHOME increased mitochondrial respiration. The effects of 12,13-diHOME were absent in NOS1-/- mice and cardiomyocytes. We also provide the first evidence that 12,13-diHOME is decreased in human patients with heart disease. CONCLUSIONS: Our results identify an endocrine role for BAT to enhance cardiac function that is mediated by regulation of calcium cycling via 12,13-diHOME and NOS1.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/transplante , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Lipidômica/métodos , Ácidos Oleicos/metabolismo , Idoso , Animais , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ácidos Oleicos/administração & dosagem , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia
3.
Am J Physiol Endocrinol Metab ; 322(3): E260-E277, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068187

RESUMO

Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including V̇o2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.


Assuntos
Resistência Física , Transcriptoma , Idoso , Células Endoteliais , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/metabolismo , Resistência Física/fisiologia
4.
Diabetologia ; 64(10): 2322-2333, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402932

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to assess metabolic flexibility (MetFlex) in participants with type 2 diabetes within the physiologically relevant conditions of sleeping, the post-absorptive (fasting) state and during meals using 24 h whole-room indirect calorimetry (WRIC) and to determine the impact of aerobic training on these novel features of MetFlex. METHODS: Normal-weight, active healthy individuals (active; n = 9), obese individuals without type 2 diabetes (ND; n = 9) and obese individuals with type 2 diabetes (n = 23) completed baseline metabolic assessments. The type 2 diabetes group underwent a 10 week supervised aerobic training intervention and repeated the metabolic assessments. MetFlex was assessed by indirect calorimetry in response to insulin infusion and during a 24 h period in a whole-room indirect calorimeter. Indices of MetFlex evaluated by WRIC included mean RQ and RQ kinetic responses after ingesting a standard high-carbohydrate breakfast (RQBF) and sleep RQ (RQsleep). Muscle mitochondrial energetics were assessed in the vastus lateralis muscle in vivo and ex vivo using 31P-magnetic resonance spectroscopy and high-resolution respirometry, respectively. RESULTS: The three groups had significantly different RQsleep values (active 0.823 ± 0.04, ND 0.860 ± 0.01, type 2 diabetes 0.842 ± 0.03; p < 0.05). The active group had significantly faster RQBF and more stable RQsleep responses than the ND and type 2 diabetes groups, as demonstrated by steeper and flatter slopes, respectively. Following the training intervention, the type 2 diabetes group displayed significantly increased RQBF slope. Several indices of RQ kinetics had significant associations with in vivo and ex vivo muscle mitochondrial capacities. CONCLUSIONS/INTERPRETATION: Twenty-four hour WRIC revealed that physiological RQ responses exemplify differences in MetFlex across a spectrum of metabolic health and correlated with skeletal muscle mitochondrial energetics. Defects in certain features of MetFlex were improved with aerobic training, emphasising the need to assess multiple aspects of MetFlex and disentangle insulin resistance from MetFlex in type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01911104. FUNDING: This study was funded by the ADA (grant no. 7-13-JF-53).


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Redes e Vias Metabólicas/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Calorimetria Indireta , Metabolismo Energético , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução , Taxa Respiratória
5.
Diabetologia ; 63(12): 2665-2674, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926189

RESUMO

AIMS/HYPOTHESIS: The risk for coronary artery disease (CAD) is substantially increased in type 1 diabetes and it has been postulated that insulin resistance may contribute to this risk. The current study measured insulin resistance in type 1 diabetes with vs without CAD and with a focus upon skeletal muscle, to test the hypothesis that insulin resistance is more severe in participants who have type 1 diabetes and CAD. Additionally, in type 1 diabetes, we examined the hypothesis that insulin resistance is more severe in soleus (an oxidative type muscle) vs tibialis anterior (a more glycolytic type of muscle). METHODS: Insulin resistance was measured in participants with type 1 diabetes with (n = 9, CAD+) and without CAD (n = 10, CAD-) using euglycaemic insulin infusions combined with positron emission tomography (PET) imaging of [18F]fluorodeoxyglucose (FDG) uptake into soleus and tibialis anterior skeletal muscles. Coronary artery calcium (CAC) score was quantified by electron beam tomography. RESULTS: CAD+ participants with type 1 diabetes had a >100-fold higher CAC score than did CAD- participants with type 1 diabetes but groups did not differ in HbA1c or insulin dose. During clamp studies, CAD+ and CAD- groups had similar glucose disposal but were insulin resistant compared with historical non-diabetic participants (n = 13). FDG uptake by soleus muscle was similarly reduced, overall, in individuals with type 1 diabetes with or without CAD compared with non-diabetic individuals. However, FDG uptake by tibialis anterior muscle was not reduced in CAD- participants with type 1 diabetes while in CAD+ participants with type 1 diabetes it was 75% greater (p < 0.01). Across all participants with type 1 diabetes, FDG uptake by tibialis anterior muscle correlated positively with CAC severity. CONCLUSIONS/INTERPRETATION: Our study confirms that systemic and skeletal muscle-specific insulin resistance is seen in type 1 diabetes but found that it does not appear to be more severe in the presence of CAD. There were, however, sharp differences between soleus and tibialis anterior muscles in type 1 diabetes: while insulin resistance was clearly manifest in soleus muscle, and was of equal severity in CAD+ and CAD- participants, tibialis anterior did not suggest insulin resistance in participants with type 1 diabetes, as FDG uptake by tibialis anterior correlated positively with CAC severity and was significantly increased in participants with type 1 diabetes and clinical CAD. Graphical abstract.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Tomografia por Emissão de Pósitrons
6.
Physiol Genomics ; 51(11): 586-595, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588872

RESUMO

The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.


Assuntos
Respiração Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Treino Aeróbico , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos/análise , Diabetes Mellitus Tipo 2/sangue , Hemoglobinas Glicadas/análise , Humanos , Resistência à Insulina/fisiologia , Lipidômica/métodos , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Transcriptoma
7.
Am J Physiol Endocrinol Metab ; 317(5): E899-E910, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479303

RESUMO

Skeletal muscle atrophy is a clinically important outcome of disuse because of injury, immobilization, or bed rest. Disuse atrophy is accompanied by mitochondrial dysfunction, which likely contributes to activation of the muscle atrophy program. However, the linkage of muscle mass and mitochondrial energetics during disuse atrophy and its recovery is incompletely understood. Transcriptomic analysis of muscle biopsies from healthy older adults subject to complete bed rest revealed marked inhibition of mitochondrial energy metabolic pathways. To determine the temporal sequence of muscle atrophy and changes in intramyocellular lipid and mitochondrial energetics, we conducted a time course of hind limb unloading-induced atrophy in adult mice. Mitochondrial respiration and calcium retention capacity were diminished, whereas H2O2 emission was increased within 3 days of unloading before significant muscle atrophy. These changes were associated with a decrease in total cardiolipin and profound changes in remodeled cardiolipin species. Hind limb unloading performed in muscle-specific peroxisome proliferator-activated receptor-γ coactivator-1α/ß knockout mice, a model of mitochondrial dysfunction, did not affect muscle atrophy but impacted muscle function. These data suggest early mitochondrial remodeling affects muscle function but not mass during disuse atrophy. Early alterations in mitochondrial energetics and lipid remodeling may represent novel targets to prevent muscle functional impairment caused by disuse and to enhance recovery from periods of muscle atrophy.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Transtornos Musculares Atróficos/metabolismo , Idoso , Animais , Repouso em Cama , Cálcio/metabolismo , Cardiolipinas/metabolismo , Feminino , Elevação dos Membros Posteriores , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Transtornos Musculares Atróficos/fisiopatologia , Consumo de Oxigênio , Recuperação de Função Fisiológica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
8.
Arch Phys Med Rehabil ; 100(9): 1663-1671, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30578772

RESUMO

OBJECTIVE: To determine if hip fracture patients would have smaller cross-sectional area (CSA) and lower radiological attenuation (suggesting greater fat infiltration) in all trunk muscles as compared to older adults without hip fractures. DESIGN: Cross-sectional analysis of computed tomography (CT) scans. SETTING: Clinical imaging facility. PARTICIPANTS: Forty-one white participants (19 men, 22 women) from the Baltimore Hip Studies seventh cohort at 2 months postfracture were compared to 693 white participants (424 men, 269 women) from the Health, Aging and Body Composition (Health ABC) study at the year 6 visit (N=734). INTERVENTION: Not applicable. MAIN OUTCOME MEASURES: Trunk muscle CSA and attenuation values were obtained from a single 10-mm, axial CT scan completed at the L4-L5 disc space in each participant. RESULTS: The hip fracture cohort had significantly smaller CSA for all trunk muscles (range: 12.1%-38% smaller) compared to the Health ABC cohort (P<.01), with the exception of the rectus abdominus muscle in men (P=.12). But, hip fracture patients, particularly female patients, had higher attenuation levels (lower intramuscular fat) in all trunk muscles (P<.0001). CONCLUSIONS: Findings are consistent with atrophy of the trunk muscles in the hip fracture population without a high level of intramuscular fat. Future work should evaluate the role of trunk muscle composition in the functional recovery of older adults after hip fracture.


Assuntos
Fraturas do Quadril/complicações , Fraturas do Quadril/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculos Abdominais Oblíquos/diagnóstico por imagem , Músculos Abdominais Oblíquos/patologia , Adiposidade , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico por imagem , Atrofia/etiologia , Estudos de Casos e Controles , Feminino , Humanos , Vértebras Lombares , Masculino , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/patologia , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/patologia , Reto do Abdome/diagnóstico por imagem , Reto do Abdome/patologia , Tomografia Computadorizada por Raios X , Tronco
9.
Br J Sports Med ; 53(18): 1141-1153, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30862704

RESUMO

There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability.In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels-a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability.


Assuntos
Aptidão Cardiorrespiratória/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Medicina de Precisão , Animais , Metabolismo Energético/genética , Humanos , Modelos Estatísticos , Condicionamento Físico Animal , Condicionamento Físico Humano , Projetos de Pesquisa
10.
Diabetologia ; 61(5): 1142-1154, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428999

RESUMO

AIMS/HYPOTHESIS: In this prospective case-control study we tested the hypothesis that, while long-term improvements in insulin sensitivity (SI) accompanying weight loss after Roux-en-Y gastric bypass (RYGB) would be similar in obese individuals with and without type 2 diabetes mellitus, stimulated-islet-cell insulin responses would differ, increasing (recovering) in those with diabetes but decreasing in those without. We investigated whether these changes would occur in conjunction with favourable alterations in meal-related gut hormone secretion and insulin processing. METHODS: Forty participants with type 2 diabetes and 22 participants without diabetes from the Longitudinal Assessment of Bariatric Surgery (LABS-2) study were enrolled in a separate, longitudinal cohort (LABS-3 Diabetes) to examine the mechanisms of postsurgical diabetes improvement. Study procedures included measures of SI, islet secretory response and gastrointestinal hormone secretion after both intravenous glucose (frequently-sampled IVGTT [FSIVGTT]) and a mixed meal (MM) prior to and up to 24 months after RYGB. RESULTS: Postoperatively, weight loss and SI-FSIVGTT improvement was similar in both groups, whereas the acute insulin response to glucose (AIRglu) decreased in the non-diabetic participants and increased in the participants with type 2 diabetes. The resulting disposition indices (DIFSIVGTT) increased by three- to ninefold in both groups. In contrast, during the MM, total insulin responsiveness did not significantly change in either group despite durable increases of up to eightfold in postprandial glucagon-like peptide 1 levels, and SI-MM and DIMM increased only in the diabetes group. Peak postprandial glucagon levels increased in both groups. CONCLUSIONS/INTERPRETATION: For up to 2 years following RYGB, obese participants without diabetes showed improvements in DI that approach population norms. Those with type 2 diabetes recovered islet-cell insulin secretion response yet continued to manifest abnormal insulin processing, with DI values that remained well below population norms. These data suggest that, rather than waiting for lifestyle or medical failure, RYGB is ideally considered before, or as soon as possible after, onset of type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00433810.


Assuntos
Diabetes Mellitus/metabolismo , Derivação Gástrica , Incretinas/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Adulto , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Indução de Remissão , Fatores de Tempo , Redução de Peso
11.
Exerc Sport Sci Rev ; 46(4): 262-270, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052546

RESUMO

The long-term efficacy of bariatric surgery is not entirely clear, and weight regain and diabetes relapse are problems for some patients. Exercise is a feasible and clinically effective adjunct therapy for bariatric surgery patients. We hypothesize that exercise is also a critical factor for long-term weight loss maintenance and lasting remission of type 2 diabetes.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/prevenção & controle , Exercício Físico , Obesidade/cirurgia , Redução de Peso , Manutenção do Peso Corporal , Terapia Combinada , Humanos , Recidiva , Resultado do Tratamento , Aumento de Peso
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1242-1249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739280

RESUMO

Skeletal muscle can store excess fat as subcellular lipid droplets (LDs). While originally viewed as uninteresting static balls of triacylglycerol, it is now clear that myocellular LDs play an active role in myocellular (patho)physiology. In this review we aim to discuss the role of LDs in muscle cell insulin sensitivity and identify parameters which appear to affect this relationship. Moreover, we discuss the application of novel tools permitting detailed examination of these parameters. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Assuntos
Resistência à Insulina , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Animais , Humanos
13.
Diabetes Obes Metab ; 18(1): 16-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26228356

RESUMO

Obesity predisposes an individual to develop numerous comorbidities, including type 2 diabetes, and represents a major healthcare issue in many countries worldwide. Bariatric surgery can be an effective treatment option, resulting in profound weight loss and improvements in metabolic health; however, not all patients achieve similar weight loss or metabolic improvements. Exercise is an excellent way to improve health, with well-characterized physiological and psychological benefits. In the present paper we review the evidence to determine whether there may be a role for exercise as a complementary adjunct therapy to bariatric surgery. Objectively measured physical activity data indicate that most patients who undergo bariatric surgery do not exercise enough to reap the health benefits of exercise. While there is a dearth of data on the effects of exercise on weight loss and weight loss maintenance after surgery, evidence from studies of caloric restriction and exercise suggest that similar adjunctive benefits may be extended to patients who perform exercise after bariatric surgery. Recent evidence from exercise interventions after bariatric surgery suggests that exercise may provide further improvements in metabolic health compared with surgery-induced weight loss alone. Additional randomized controlled exercise trials are now needed as the next step to more clearly define the potential for exercise to provide additional health benefits after bariatric surgery. This valuable evidence will inform clinical practice regarding much-needed guidelines for exercise after bariatric surgery.


Assuntos
Cirurgia Bariátrica , Terapia por Exercício , Obesidade/terapia , Restrição Calórica , Terapia Combinada , Humanos , Resultado do Tratamento , Redução de Peso
14.
J Physiol ; 598(18): 3811, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643157
16.
Physiol Genomics ; 46(5): 149-58, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24423970

RESUMO

To date, physical exercise is the only intervention consistently demonstrated to attenuate age-related declines in physical function. However, variability exists in seniors' responsiveness to training. One potential source of variability is the insertion (I allele) or deletion (D allele) of a 287 bp fragment in intron 16 of the angiotensin-converting enzyme (ACE) gene. This polymorphism is known to influence a variety of physiological adaptions to exercise. However, evidence is inconclusive regarding the influence of this polymorphism on older adults' functional responses to exercise. This study aimed to evaluate the association of ACE I/D genotypes with changes in physical function among Caucasian older adults (n = 283) following 12 mo of either structured, multimodal physical activity or health education. Measures of physical function included usual-paced gait speed and performance on the Short Physical Performance Battery (SPPB). After checking Hardy-Weinberg equilibrium, we used using linear regression to evaluate the genotype*treatment interaction for each outcome. Covariates included clinic site, body mass index, age, sex, baseline score, comorbidity, and use of angiotensin receptor blockers or ACE inhibitors. Genotype frequencies [II (19.4%), ID (42.4%), DD (38.2%)] were in Hardy-Weinberg equilibrium (P > 0.05). The genotype*treatment interaction was statistically significant for both gait speed (P = 0.002) and SPPB (P = 0.020). Exercise improved gait speed by 0.06 ± 0.01 m/sec and SPPB score by 0.72 ± 0.16 points among those with at least one D allele (ID/DD carriers), but function was not improved among II carriers. Thus, ACE I/D genotype appears to play a role in modulating functional responses to exercise training in seniors.


Assuntos
Exercício Físico/fisiologia , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Teste de Esforço/métodos , Feminino , Marcha , Frequência do Gene , Genótipo , Educação em Saúde , Humanos , Masculino , Limitação da Mobilidade , População Branca
17.
Am J Physiol Endocrinol Metab ; 307(12): E1117-24, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25352435

RESUMO

We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload.


Assuntos
Resistência à Insulina , Lipídeos/administração & dosagem , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Adulto , Respiração Celular/efeitos dos fármacos , Emulsões/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Técnica Clamp de Glucose , Humanos , Masculino , Mitocôndrias Musculares/fisiologia , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Fatores de Tempo , Adulto Jovem
18.
Arch Phys Med Rehabil ; 95(4): 726-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24355427

RESUMO

OBJECTIVE: To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men. DESIGN: Longitudinal cohort study with 2.3±0.3 years of follow-up. SETTING: One clinical site. PARTICIPANTS: Participants (n=372; mean age ± SD, 77.2±5.1y; 99.5% white; body mass index, 27.9±3.7kg/m(2); power, 1.88±0.6W/kg) at 1 site of the Osteoporotic Fractures in Men Study (N=5994). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: A nerve function ancillary study was performed 4.6±0.4 years after baseline. Muscle power was measured using a power rig. Peroneal motor nerve conduction amplitude, distal motor latency, and mean f-wave latency were measured. Sensory nerve function was assessed using 10-g and 1.4-g monofilaments and sural sensory nerve conduction amplitude and distal latency. Peripheral neuropathy symptoms at the leg and feet were assessed by self-report. RESULTS: After adjustments for age, height, and total body lean and fat mass, 1 SD lower motor (ß=-.07, P<.05) and sensory amplitude (ß=-.09, P<.05) and 1.4-g (ß=-.11, P<.05) and 10-g monofilament insensitivity (ß=-.17, P<.05) were associated with lower muscle power/kg. Compared with the effect of age on muscle power (ß per year, -.05; P<.001), this was equivalent to aging 1.4 years for motor amplitude, 1.8 years for sensory amplitude, 2.2 years for 1.4-g monofilament detection, and 3.4 years for 10-g detection. Baseline 1.4-g monofilament detection predicted a greater decline in muscle power/kg. Short-term change in nerve function was not associated with concurrent short-term change in muscle power/kg. CONCLUSIONS: Worse sensory and motor nerve function were associated with lower muscle power/kg and are likely important for impaired muscle function in older men. Monofilament sensitivity was associated with a greater decline in muscle power/kg, and screening may identify an early risk for muscle function decline in late life, which has implications for disability.


Assuntos
Extremidade Inferior/fisiologia , Força Muscular/fisiologia , Condução Nervosa/fisiologia , Nervo Fibular/fisiologia , Nervo Sural/fisiologia , Potenciais de Ação/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Estudos de Coortes , Humanos , Modelos Lineares , Estudos Longitudinais , Extremidade Inferior/inervação , Masculino
19.
Cell Metab ; 36(4): 702-724, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38262420

RESUMO

Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.


Assuntos
Exercício Físico , Proteômica , Humanos , Exercício Físico/fisiologia , Terapia por Exercício , Ritmo Circadiano/fisiologia , Sono
20.
Artigo em Inglês | MEDLINE | ID: mdl-37847228

RESUMO

BACKGROUND: Frailty can occur in older adults without disability or multimorbidity. Current methods focus on the most frail, but poorly discriminate among those "not frail." METHODS: The Study of Muscle, Mobility, and Aging (SOMMA) included 879 adults aged 70 years and older without mobility disability. We operationalized frailty domains using: peak oxygen consumption (endurance), digit symbol substitution test (speed), leg power (strength), perceived fatigability, D3 creatine dilution (sarcopenia), and accelerometry (sedentary behavior) to construct a frailty score of 0-12 summing tertiles (0-2) of each component. We used linear or logistic regression with and without adjustment for confounders to examine associations with age, reported, and performance function. RESULTS: The SOMMA frailty score distribution was broad and strongly associated with age (r = 0.33, p < .0001). Each point was associated with a 30%-50% higher odds of having reported difficulty with activities of daily living or mobility. After grouping the total score (0-3, 4-7, and 8-12) those in the highest group were 9-31 times more likely to have functional limitation, and at least 8 times more likely to have poorer function after full adjustment. Higher scores identified those less likely to report ease of walking or higher physical activity. Peak oxygen consumption, leg power, fatigability, and digit symbol score contributed most to these associations. CONCLUSIONS: The SOMMA frailty score characterizes frailty as a continuum from frail to vigorous with assessments that are amenable to change. Associations with age and function suggest utility for distinguishing a wide range of vigor and vulnerability in relatively well-functioning older adults.


Assuntos
Fragilidade , Idoso , Humanos , Idoso de 80 Anos ou mais , Fragilidade/diagnóstico , Atividades Cotidianas , Avaliação Geriátrica , Envelhecimento , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA