Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 98-105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867037

RESUMO

A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.

2.
Proc Natl Acad Sci U S A ; 117(41): 25344-25351, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989149

RESUMO

The large concentrations of ultrafine particles consistently observed at high altitudes over the tropics represent one of the world's largest aerosol reservoirs, which may be providing a globally important source of cloud condensation nuclei. However, the sources and chemical processes contributing to the formation of these particles remain unclear. Here we investigate new particle formation (NPF) mechanisms in the Amazon free troposphere by integrating insights from laboratory measurements, chemical transport modeling, and field measurements. To account for organic NPF, we develop a comprehensive model representation of the temperature-dependent formation chemistry and thermodynamics of extremely low volatility organic compounds as well as their roles in NPF processes. We find that pure-organic NPF driven by natural biogenic emissions dominates in the uppermost troposphere above 13 km and accounts for 65 to 83% of the column total NPF rate under relatively pristine conditions, while ternary NPF involving organics and sulfuric acid dominates between 8 and 13 km. The large organic NPF rates at high altitudes mainly result from decreased volatility of organics and increased NPF efficiency at low temperatures, somewhat counterbalanced by a reduced chemical formation rate of extremely low volatility organic compounds. These findings imply a key role of naturally occurring organic NPF in high-altitude preindustrial environments and will help better quantify anthropogenic aerosol forcing from preindustrial times to the present day.

3.
Proc Natl Acad Sci U S A ; 117(32): 18998-19006, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719114

RESUMO

The change in planetary albedo due to aerosol-cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol-cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm-3 and 24 cm-3 By extension, the radiative forcing since 1850 from aerosol-cloud interactions is constrained to be -1.2 W⋅m-2 to -0.6 W⋅m-2 The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol-cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models.

4.
Nature ; 533(7604): 521-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225125

RESUMO

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Assuntos
Aerossóis/química , Atmosfera/química , Mudança Climática , Íons/química , Oxigênio/química , Material Particulado/química , Poluição do Ar/análise , Monoterpenos Bicíclicos , Radiação Cósmica , Atividades Humanas , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Teoria Quântica , Ácidos Sulfúricos/análise , Volatilização
5.
Nature ; 533(7604): 527-31, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225126

RESUMO

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

6.
Environ Sci Technol ; 55(8): 4357-4367, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705653

RESUMO

A major challenge in assessing the impact of aerosols on climate change is to understand how human activities change aerosol loading and properties relative to the pristine/preindustrial baseline. Here, we combine chemical transport simulations and field measurements to investigate the effect of anthropogenic pollution from an isolated metropolis on the particle number concentration over the preindustrial-like Amazon rainforest through various new-particle formation (NPF) mechanisms and primary particle emissions. To represent organic-mediated NPF, we employ a state-of-the-art model that systematically simulates the formation chemistry and thermodynamics of extremely low volatility organic compounds, as well as their roles in NPF processes, and further update the model to improve organic NPF simulations under human-influenced conditions. Results show that urban pollution from the metropolis increases the particle number concentration by a factor of 5-25 over the downwind region (within 200 km from the city center) compared to background conditions. Our model indicates that NPF contributes over 70% of the total particle number in the downwind region except immediately adjacent to the sources. Among different NPF mechanisms, the ternary NPF involving organics and sulfuric acid overwhelmingly dominates. The improved understanding of particle formation mechanisms will help better quantify anthropogenic aerosol forcing from preindustrial times to the present day.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Cidades , Poluição Ambiental , Humanos , Floresta Úmida
7.
Proc Natl Acad Sci U S A ; 115(37): 9122-9127, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30154167

RESUMO

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.

8.
Proc Natl Acad Sci U S A ; 113(43): 12053-12058, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790989

RESUMO

The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.


Assuntos
Aerossóis/análise , Atmosfera/análise , Modelos Estatísticos , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Clima , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Desenvolvimento Industrial/história , Incerteza
9.
Sci Adv ; 9(36): eadi5297, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682996

RESUMO

Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of ß-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei.

10.
Sci Adv ; 7(13)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33762335

RESUMO

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).

11.
Sci Adv ; 4(12): eaau5363, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30547087

RESUMO

A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.

12.
Curr Clim Change Rep ; 3(1): 1-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32226722

RESUMO

PURPOSE OF REVIEW: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. RECENT FINDINGS: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. SUMMARY: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future.

13.
Science ; 354(6316): 1119-1124, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789796

RESUMO

Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA