Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Med Sci ; 17(17): 2703-2717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162798

RESUMO

Introduction: The aim of this study was to determine the role of Notch in indoxyl sulfate (IS)-induced vascular calcification (VC). Materials and methods: VC and expression of Notch-related and osteogenic molecules were examined in Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH+IS). The effects of IS on expression of Notch receptors, apoptotic activity, and calcification were examined in cultured aortic smooth muscle cells (SMCs). Results: Medial calcification was noted only in aortas and coronary arteries of DH+IS rats. Notch1, Notch3, and Hes-1 were expressed in aortic SMCs of all rats, but only weakly in the central areas of the media and around the calcified lesions in DH+IS rats. RT-PCR and western blotting of DH+IS rat aortas showed downregulation of Notch ligands, Notch1 and Notch3, downstream transcriptional factors, and SM22, and conversely, overexpression of osteogenic markers. Expression of Notch1 and Notch3 in aortic SMCs was highest in incubation under 500 µM IS for 24hrs, and then decreased time- and dose-dependently. Coupled with this decrease, IS increased caspase 3/7 activity and TUNEL-positive aortic SMCs. In addition, pharmacological Notch signal inhibition with DAPT induced apoptosis in aortic SMCs. ZVAD, a caspase inhibitor abrogated IS-induced and DAPT-induced in vitro vascular calcification. Knockdown of Notch1 and Notch3 cooperatively increased expression of osteogenic transcriptional factors and decreased expression of SM22. Conclusion: Our results suggested that IS-induced VC is mediated through suppression of Notch activity in aortic SMCs, induction of osteogenic differentiation and apoptosis.


Assuntos
Indicã/toxicidade , Miócitos de Músculo Liso/patologia , Receptores Notch/metabolismo , Calcificação Vascular/patologia , Animais , Aorta/citologia , Aorta/patologia , Cálcio/análise , Linhagem Celular , Dipeptídeos/farmacologia , Técnicas de Silenciamento de Genes , Indicã/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/diagnóstico
2.
Cardiovasc Toxicol ; 22(4): 365-377, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088197

RESUMO

In patients with chronic kidney diseases (CKD), high serum indoxyl sulfate (IS) levels correlate with cardiac fibrosis and hypertrophy and thus a critical risk factor for heart failure. The aim of this study was to determine the effects of IS on cardiac function and inflammasome pathway in a rat model of CKD. We assessed the physiological and pathological changes and measured biomarkers of fibrosis and hypertrophy in the hearts of Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH + IS). Low left ventricular (LV) ejection fraction, LV dilatation, and advanced myocardial fibrosis and hypertrophy were observed in DH + IS, which resemble changes found in uremic cardiomyopathy. These changes were independent of renal function and blood pressure. RT-PCR and western blotting analysis showed upregulation of fibrosis and hypertrophy-related biomarkers and adhesion molecules in the hearts of DH + IS rats. IS activated aryl hydrocarbon receptor (AHR) pathway, nuclear factor kappa B p65 (NF-κB p65), and inflammasome in the myocardium of DH + IS rat. Moreover, IS upregulated the expression of critical NLRP3 inflammasome components (NLRP3, ASC, and procaspase-1) and increased production of IL-1ß and IL-18. Finally, IS upregulated various inflammatory cytokines, such as MCP-1, TNF-α, IL-6, and TGFß1, in the myocardium. Our results suggested that IS induced cardiac fibrosis and hypertrophy and impaired LV function through activation of cardiac NLRP3 inflammasome via the AHR/NF-κB pathway.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Renal Crônica , Animais , Cardiomegalia , Feminino , Fibrose , Humanos , Indicã/toxicidade , Inflamassomos/metabolismo , Masculino , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Endogâmicos Dahl
3.
Nephron Exp Nephrol ; 115(4): e101-11, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20424488

RESUMO

BACKGROUND/AIM: An imbalance in renal redox status contributes to progression of renal dysfunction. We investigated the effects of an oral charcoal adsorbent (AST-120) on renal redox status, superoxide production from renal mitochondria, and serum lipid peroxidation using chronic kidney disease (CKD) model rats. METHODS: CKD was induced by 5/6 nephrectomy. CKD rats were divided into 2 groups: controls, and those treated with AST-120 for 20 weeks. We evaluated: (1) renal redox status by in vivo low-frequency electron spin resonance imaging (EPRI); (2) renal superoxide scavenging activity (SSA); (3) superoxide production from renal mitochondria; (4) immunostaining for Cu-Zn superoxide dismutase (SOD), and (5) oxidative stress markers including LDL-negative charge (LDL-CMF), serum lipid peroxide (LPO) and urinary hexanoyl-lysine (HEL). The effect of indoxyl sulfate, a uremic toxin, on mitochondrial superoxide production was also investigated. RESULTS: AST-120 treatment improved renal function, renal SSA, renal mitochondrial superoxide production, renal SOD expression, renal redox status by EPRI, and oxidative stress profiles by LDL-CMF, LPO and urinary HEL. Addition of indoxyl sulfate increased mitochondrial superoxide production and AST-120 also decreased this. CONCLUSIONS: Improvements in the redox status and lipid peroxidation induced by AST-120 may delay the progression of CKD.


Assuntos
Carbono/uso terapêutico , Falência Renal Crônica/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Óxidos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Adsorção , Animais , Creatinina/sangue , Falência Renal Crônica/fisiopatologia , Lipídeos/sangue , Masculino , Microesferas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Superóxido Dismutase/metabolismo
4.
Nephrol Dial Transplant ; 24(7): 2089-95, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19188341

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is an important risk factor for cardiovascular disease (CVD). Increased oxidative stress plays a role in the pathogenesis of CVD in CKD patients. The oral charcoal adsorbent AST-120 attenuates the progression of CKD possibly by removing uraemic toxins such as indoxyl sulfate (IS), and reduces oxidative stress. We investigated the relationship between oxidative stress and cardiac damage in CKD and its prevention by AST-120. METHODS: Male Lewis rats were administered adriamycin at 8 weeks of age, and the right kidney was removed at 12 weeks of age. From 14 weeks of age, the rats were treated daily with AST-120 (n = 8) or were untreated (control group, n = 8). At 34 weeks of age, the rats were killed and urinary and blood biochemical tests as well as cardiac histological analyses were performed. RESULTS: At 14 weeks of age, there were no significant differences in blood pressure, renal function (creatinine clearance: 1.54 +/- 0.28 mL/min versus 1.60 +/- 0.22 mL/min), oxidative stress markers or other biochemical data between the control and AST-120 groups. At 34 weeks, despite similar blood pressure and renal function (creatinine clearance: 0.78 +/- 0.46 mL/min versus 0.75 +/- 0.54 mL/min), serum concentrations of IS and urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), acrolein and IS were significantly lower in the AST-120 group than in the control group. Heart volume, left ventricular volume and cardiac fibrosis were significantly smaller in the experimental AST-120 group than in the control group. Immunohistological analysis revealed that the numbers of 8-OHdG- and acrolein-positive cardiomyocytes and the degrees of myocardial and perivascular fibrosis were ameliorated by AST-120 administration. The myocardial fibrosis score was significantly associated with the 8-OHdG- (r = 0.848, P < 0.001) and acrolein-positive (r = 0.812, P < 0.001) cell scores. The perivascular fibrosis score was also significantly associated with the 8-OHdG- (r = 0.906, P < 0.0001) and acrolein-positive (r = 0.789, P < 0.001) cell scores. CONCLUSIONS: Oxidative stress is suggested to play a key role in the development of cardiac hypertrophy and fibrosis in CKD. AST-120 may suppress oxidative stress and reduce cardiac damage in CKD.


Assuntos
Carbono/administração & dosagem , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Nefropatias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxidos/administração & dosagem , Animais , Doença Crônica , Progressão da Doença , Cardiopatias/etiologia , Nefropatias/complicações , Masculino , Ratos , Ratos Endogâmicos Lew
5.
Am J Nephrol ; 28(3): 446-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18160814

RESUMO

BACKGROUND/AIM: Indoxyl sulfate (IS) is a uremic toxin that accelerates the progression of chronic renal failure (CRF). This study aimed at determining whether IS impairs antioxidative systems (redox status) in the kidney. METHODS: IS was orally administered to normal and subtotally nephrectomized (three fourths and five sixths) rats (CRF rats) for 2 weeks. By use of in vivo and ex vivo electron spin resonance spectroscopy, the kidney redox status was evaluated using carbamoyl-PROXYL as a radical spin probe in living rats, and the kidney superoxide scavenging activity was measured. Immunohistochemistry of superoxide dismutase (SOD) in the kidney was performed. RESULTS: Administration of IS increased serum and kidney levels of IS and serum creatinine and decreased creatinine clearance. CRF rats showed reduced spin reduction rate, prolonged half-life of the spin probe, and reduced superoxide scavenging activity and SOD-positive areas in the kidney as compared with normal rats. Administration of IS further reduced radical spin reduction rate, prolonged half-life of the spin probe, and reduced superoxide scavenging activity and SOD-positive areas in the kidneys. CONCLUSIONS: Administration of IS reduced superoxide scavenging activity in the kidneys of normal and CRF rats. Thus, the nephrotoxicity of IS may be induced by impairing the antioxidative systems in the kidney.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Indicã/metabolismo , Falência Renal Crônica/metabolismo , Rim/metabolismo , Superóxidos/metabolismo , Animais , Estudos de Casos e Controles , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Meia-Vida , Imuno-Histoquímica , Pirrolidinas , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Uremia/metabolismo
6.
Nephrol Dial Transplant ; 23(6): 1892-901, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18334529

RESUMO

BACKGROUND: Stage 5 chronic kidney disease (CKD) is associated with enhanced aortic calcification. The aim of this study was to determine if the administration of indoxyl sulphate (IS), a uraemic toxin, stimulates the progression of aortic calcification. METHODS: The rat groups consisted of (i) Dahl salt-resistant normotensive rats (DR) with intake of 0.3% salt, (ii) Dahl salt-sensitive hypertensive rats (DS) with intake of 2.0% salt and (iii) Dahl salt-sensitive hypertensive IS-administered rats (DS-IS) with intake of 2.0% salt and 200 mg/kg of IS in water. After 30 weeks, their aortic and kidney tissues were excised for histological and immunohistochemical analyses. RESULTS: Severe vascular calcification was observed by von Kossa staining in the arcuate aorta of all the DS-IS rats, but hardly in DS or DR rats. Immunohistochemistry demonstrated that osteopontin, core binding factor 1 (Cbfal), alkaline phosphatase (ALP), osteocalcin, IS and organic anion transporter (OAT) 3 were colocalized in the cells embedded in the aortic calcification area of DS-IS rats. Wall thickness was significantly increased in arcuate, thoracic and abdominal aortas of DS-IS rats compared with DS and DR rats. DS-IS rats showed significantly increased extent of glomerular hypertrophy, mesangial expansion, Masson's trichrome-positive tubulointerstitial area and glomerular and tubulointerstitial expression of transforming growth factor-ssl as compared with DS and DR rats. CONCLUSIONS: IS induced aortic calcification with expression of osteoblast-specific proteins and aortic wall thickening. IS is not only a nephrotoxin but also a vascular toxin, and may contribute to the progression of aortic calcification in stage 5 CKD patients.


Assuntos
Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Calcinose/metabolismo , Calcinose/patologia , Osteoblastos/metabolismo , Análise de Variância , Animais , Doenças da Aorta/induzido quimicamente , Pressão Sanguínea/efeitos dos fármacos , Calcinose/induzido quimicamente , Fatores de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Indicã , Glomérulos Renais/patologia , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Osteopontina/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta
7.
Nutr Metab Cardiovasc Dis ; 16(7): 477-84, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015185

RESUMO

BACKGROUND AND AIM: We have developed a new rat model that mimics the natural course of diabetic nephropathy seen in type 2 diabetes. METHODS: Nine days after intravenous injection of streptozotocin (STZ) (40 mg/kg) or vehicle to 8-week-old male Sprague-Dawley rats, the animals' right kidneys were surgically removed. Two weeks after surgery, the STZ-injected rats were fed on either a high-fat (ST+HF) or a normal (ST) diet, while the vehicle-injected rats were fed on the high-fat diet (HF). RESULTS: Baseline biochemical markers did not differ between the three groups. Only the ST+HF group showed a significant increase in plasma glucose levels after 15 weeks, and simultaneously plasma insulin levels started to decrease, followed by an increase in plasma total cholesterol and triglyceride levels at 25 weeks and slightly later by an increase in blood pressure. In the ST+HF group, significant microalbuminuria was detected at 15 weeks followed by overt proteinuria, both of which were absent in the other two groups. Also in ST+HF, the creatinine clearance rate increased until week 15, and then gradually decreased. Histologically, ST+HF rats showed mesangial expansion at week 25, and diffuse glomerular sclerosis at the end of the experiments. CONCLUSION: The chronological changes in biochemical, physiological and histological markers in ST+HF rats are reminiscent of human type 2 diabetes and nephropathy. Our new model of type 2 diabetic nephropathy should help us to understand the pathophysiology of the disease and serve to explore measures to prevent and treat diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Diabetes Mellitus Tipo 2/complicações , Gorduras na Dieta/administração & dosagem , Masculino , Nefrectomia , Ratos , Ratos Sprague-Dawley , Estreptozocina
8.
Br J Pharmacol ; 173(8): 1302-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26750807

RESUMO

BACKGROUND AND PURPOSE: Chronic kidney disease (CKD) is a crucial risk factor for cardiovascular disease (CVD), and combined CKD and CVD further increases morbidity and mortality. Here, we investigated effects of AST-120 on oxidative stress and kidney injury using a model of myocardial infarction (MI) in rats. EXPERIMENTAL APPROACH: At 10 weeks, male spontaneously hypertensive rats (SHR) were divided into three groups: SHR (n = 6), MI (n = 8) and MI + AST-120 (n = 8). AST-120 administration was started at 11 weeks after MI. At 18 weeks, the rats were killed, and blood and urine, mRNA expression and renal histological analyses were performed. Echocardiography was performed before and after MI. KEY RESULTS: At 18 weeks, the BP was significantly lower in the MI and MI+AST-120 groups than in the SHR group. Elevated levels of indoxyl sulfate (IS), one of the uremic toxins, in serum and urine were reduced by AST-120 treatment, compared with the MI group. Markers of oxidative stress in urine and serum biomarkers of kidney injury were decreased in the MI+AST-120 group compared with the other two groups. Renal expression of mRNAs for kidney injury related-markers were decreased in the MI+AST-120 group, compared with the MI group. In vitro data also supported the influence of IS on kidney injury. Immunohistological analysis showed that intrarenal oxidative stress was reduced by AST-120 administration. CONCLUSIONS AND IMPLICATIONS: Serum IS was increased after MI and treatment with AST-120 may have protective effects on kidney injury after MI by suppressing oxidative stress.


Assuntos
Antioxidantes/uso terapêutico , Carbono/uso terapêutico , Rim/efeitos dos fármacos , Rim/lesões , Infarto do Miocárdio/tratamento farmacológico , Óxidos/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Biomarcadores/sangue , Biomarcadores/urina , Pressão Sanguínea/efeitos dos fármacos , Carbono/administração & dosagem , Células Cultivadas , Ecocardiografia , Rim/patologia , Masculino , Infarto do Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Óxidos/administração & dosagem , Ratos , Ratos Endogâmicos SHR
9.
Life Sci ; 91(5-6): 172-7, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22781707

RESUMO

AIMS: Indoxyl sulfate, a uremic toxin, is considered a risk factor for arteriosclerosis in patients with chronic kidney disease (CKD). We previously reported the actions of indoxyl sulfate including crosstalk with platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells (VSMCs). The present study examines whether indoxyl sulfate enhances angiotensin II (Ang II) signaling because serum levels of Ang II are elevated in patients with CKD. MAIN METHODS: The effect of indoxyl sulfate and Ang II on phosphorylation of ERK and epidermal growth factor receptor (EGFR), and migration were determined using VSMCs. The expression of EGFR was determined using not only VSMCs but also artery of normal, uremic, and indoxyl sulfate-administrated uremic rats. KEY FINDINGS: Ang II-dependent phosphorylation of ERK and EGFR, and migration of VSMCs were augmented by a prior 24-h incubation with indoxyl sulfate even in the absence of indoxyl sulfate during Ang II stimulation. The expression of EGFR was increased in indoxyl sulfate-stimulated cultured VSMCs. In arterial VSMCs of rats, serum levels of indoxyl sulfate reflected the expression level of EGFR. The upregulated EGFR expression by indoxyl sulfate was suppressed by the antioxidant, N-acetylcysteine. An EGFR inhibitor, AG1478, repressed the enhancement of Ang II-induced cellular effects by indoxyl sulfate. Taken together, these findings indicate that indoxyl sulfate enhances Ang II signaling through reactive oxygen species-induced EGFR expression. SIGNIFICANCE: The actions of indoxyl sulfate including crosstalk with Ang II signaling may be closely involved in the pathogenesis of CKD associated with arteriosclerosis.


Assuntos
Angiotensina II/metabolismo , Receptores ErbB/genética , Indicã/toxicidade , Miócitos de Músculo Liso/efeitos dos fármacos , Acetilcisteína/farmacologia , Angiotensina II/administração & dosagem , Animais , Arteriosclerose/fisiopatologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Indicã/administração & dosagem , Indicã/sangue , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirfostinas/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA