Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Syst Biol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956405

RESUMO

Scientific names permit humans and search engines to access knowledge about the biodiversity that surrounds us, and names linked to DNA sequences are playing an ever-greater role in search-and-match identification procedures. Here, we analyze how users and curators of the National Center for Biotechnology Information (NCBI) are flagging and curating sequences derived from nomenclatural type material, which is the only way to improve the quality of DNA-based identification in the long run. For prokaryotes, 18,281 genome assemblies from type strains have been curated by NCBI staff and improve the quality of prokaryote naming. For Fungi, type-derived sequences representing over 21,000 species are now essential for fungus naming and identification. For the remaining eukaryotes, however, the numbers of sequences identifiable as type-derived are minuscule, representing only 1,000 species of arthropods, 8,441 vertebrates, and 430 embryophytes. An increase in the production and curation of such sequences will come from (i) sequencing of types or topotypic specimens in museum collections, (ii) the March 2023 rule changes at the International Nucleotide Sequence Database Collaboration requiring more metadata for specimens, and (iii) efforts by data submitters to facilitate curation, including informing NCBI curators about a specimen's type status. We illustrate different type-data submission journeys and provide best-practice examples from a range of organisms. Expanding the number of type-derived sequences in DNA databases, especially of eukaryotes, is crucial for capturing, documenting, and protecting biodiversity.

2.
J Eukaryot Microbiol ; 71(2): e13015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38078515

RESUMO

In the microscopy realm, a large body of dark biodiversity still awaits to be uncovered. Unarmoured dinophytes are particularly neglected here, as they only present inconspicuous traits. In a remote German locality, we collected cells, from which a monoclonal strain was established, to study morphology using light and electron microscopy and to gain DNA sequences from the rRNA operon. In parallel, we detected unicellular eukaryotes in ponds of the Botanical Garden Munich-Nymphenburg by DNA-metabarcoding (V4 region of the 18S rRNA gene), weekly sampled over the course of a year. Strain GeoK*077 turned out to be a new species of Borghiella with a distinct position in molecular phylogenetics and characteristic coccoid cells of ovoid shape as the most important diagnostic trait. Borghiella ovum, sp. nov., was also present in artificial ponds of the Botanical Garden and was the second most abundant dinophyte detected in the samples. More specifically, Borghiella ovum, sp. nov., shows a clear seasonality, with high frequency during winter months and complete absence during summer months. The study underlines the necessity to assess the biodiversity, particularly of the microscopy realm more ambitiously, if even common species such as formerly Borghiella ovum are yet unknown to science.


Assuntos
Dinoflagellida , Lagoas , RNA Ribossômico 18S/genética , Biodiversidade , Microscopia , Filogenia , Dinoflagellida/genética
3.
J Eukaryot Microbiol ; 68(1): e12833, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33155377

RESUMO

Dinophytes are widely distributed in marine- and fresh-waters, but have yet to be conclusively documented in terrestrial environments. Here, we evaluated the presence of these protists from an environmental DNA metabarcoding dataset of Neotropical rainforest soils. Using a phylogenetic placement approach with a reference alignment and tree, we showed that the numerous sequencing reads that were phylogenetically placed as dinophytes did not correlate with taxonomic assignment, environmental preference, nutritional mode, or dormancy. All the dinophytes in the soils are rather windblown dispersal units of aquatic species and are not biologically active residents of terrestrial environments.


Assuntos
Biodiversidade , Dinoflagellida/fisiologia , Solo/parasitologia , Costa Rica , Equador , Panamá , Floresta Úmida , Vento
4.
Mol Phylogenet Evol ; 144: 106672, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734454

RESUMO

Poor morphological and molecular differentiation in recently diversified lineages is a widespread phenomenon in plants. Phylogenetic relationships within such species complexes are often difficult to resolve because of the low variability in traditional molecular loci. Furthermore, biological phenomena responsible for topological incongruence such as Incomplete Lineage Sorting (ILS) and hybridisation complicate the resolution of phylogenetic relationships among closely related taxa. In this study, we employ a Genotyping-by-sequencing (GBS) approach to disentangle evolutionary relationships within a species complex belonging to the Neotropical orchid genus Cycnoches. This complex includes seven taxa distributed through Central America and the Colombian Chocó, and is nested within a clade estimated to have first diversified in the early Quaternary. Previous phylogenies inferred from few loci failed to provide support for internal relationships within the complex. Our Neighbour-net and coalescent-based analyses inferred from ca. 13,000 GBS loci obtained from 31 individuals belonging to six of the seven traditionally accepted Cycnoches taxa provided a robust phylogeny for this group. The genus Cycnoches includes three main clades that are further supported by morphological traits and geographic distributions. Similarly, a topology reconstructed through maximum likelihood (ML) inference of concatenated GBS loci produced results that are comparable with those reconstructed through coalescence and network-based methods. Our comparative phylogenetic informativeness analyses suggest that the low support evident in the ML phylogeny might be attributed to the abundance of uninformative GBS loci, which can account for up to 50% of the total number of loci recovered. The phylogenomic framework provided here, as well as morphological evidence and geographical patterns, suggest that the six entities previously thought to be different species or subspecies might actually represent only three distinct segregates. We further discuss the limited phylogenetic informativeness found in our GBS approach and its utility to disentangle relationships within recent and rapidly evolving species complexes. Our study is the first to demonstrate the utility of GBS data to reconstruct relationships within young (~2 Ma) Neotropical plant clades, opening new avenues for studies of species complexes that populate the species-rich orchid family.


Assuntos
Evolução Biológica , Orchidaceae/classificação , Orchidaceae/genética , América Central , DNA de Plantas/análise , Genótipo , Técnicas de Genotipagem/métodos , Hibridização Genética , Filogenia , Filogeografia , Análise de Sequência de DNA/métodos
5.
Environ Microbiol ; 21(11): 4125-4135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369197

RESUMO

Dinophytes are one of few protist groups that have an extensive fossil record and are therefore appropriate for time estimations. However, insufficient sequence data and strong rate heterogeneity have been hindering to put dinophyte evolution into a time frame until now. Marine-to-freshwater transitions within this group are considered geologically old and evolutionarily exceptional due to strong physiological constraints that prevent such processes. Phylogenies based on concatenated rRNA sequences (including 19 new GenBank entries) of two major dinophyte lineages, Gymnodiniaceae and Peridiniales, were carried out using an uncorrelated molecular clock and five calibration points based on fossils. Contrarily to previous assumptions, marine-to-freshwater transitions are more frequent in dinophytes (i.e. five marine-freshwater transitions in Gymnodiniaceae, up to ten but seven strongly supported transitions in Peridiniales), and none of them occurred as early as 140 MYA. Furthermore, most marine-to-freshwater transitions, and the followed diversification, took place after the Cretaceous-Paleogene boundary. Not older than 40 MYA, the youngest transitions within Gymnodiniaceae and Peridiniales occurred under the influence of the Eocene climate shift. Our evolutionary scenario indicates a gradual diversification of dinophytes without noticeable impact of catastrophic events, and their freshwater lineages have originated several times independently at different points in time.


Assuntos
Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Clima , Evolução Molecular , Fósseis , Água Doce , RNA Ribossômico/genética , Tempo
6.
Mol Phylogenet Evol ; 118: 392-402, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066288

RESUMO

Peridinialean dinophytes include a unique evolutionary group of algae harboring a diatom as an endosymbiont (Kryptoperidiniaceae), whose phylogenetic origin and internal relationships are not fully resolved at present. Several interpretations of the thecal plate pattern present in Durinskia oculata currently compete and lead to considerable taxonomic confusion. Moreover, it is unclear at present whether the species is restricted to freshwater habitats, or occurs in the marine environment as well. We collected material at the type locality of D. oculata in the Czech Republic and established monoclonal strains. Dinophyte cells were studied using light and electron microscopy, and we also determined DNA sequences of several rRNA regions (including the Internal Transcribed Spacers) for molecular characterization and phylogenetics. The morphology of strain GeoM∗662 indicated a plate formula of Po, X, 4', 2a, 6″, 5c, 5s, 5‴, 2⁗, which was sustained also in form of a microscopic slide serving as an epitype. In the molecular DNA tree based on a matrix composed of concatenated rRNA sequences, strain GeoM∗662 showed a close relationship to other species of Durinskia, and the freshwater species clearly differs from the marine members. Two independent colonization events from the marine into the freshwater environment can be inferred within the Kryptoperidiniaceae. We provide a summarizing cladogram of dinophytes harboring a diatom as endosymbiont with evolutionary novelties indicated as well as a morphological key to the 6 species of Durinskia that are currently accepted.


Assuntos
Diatomáceas/citologia , República Tcheca , Diatomáceas/genética , Funções Verossimilhança , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , Análise de Sequência de DNA
7.
Syst Biol ; 65(1): 51-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26430060

RESUMO

Phylogenetic relationships inferred from multilocus organellar and nuclear DNA data are often difficult to resolve because of evolutionary conflicts among gene trees. However, conflicting or "outlier" associations (i.e., linked pairs of "operational terminal units" in two phylogenies) among these data sets often provide valuable information on evolutionary processes such as chloroplast capture following hybridization, incomplete lineage sorting, and horizontal gene transfer. Statistical tools that to date have been used in cophylogenetic studies only also have the potential to test for the degree of topological congruence between organellar and nuclear data sets and reliably detect outlier associations. Two distance-based methods, namely ParaFit and Procrustean Approach to Cophylogeny (PACo), were used in conjunction to detect those outliers contributing to conflicting phylogenies independently derived from chloroplast and nuclear sequence data. We explored their efficiency of retrieving outlier associations, and the impact of input data (unit branch length and additive trees) between data sets, by using several simulation approaches. To test their performance using real data sets, we additionally inferred the phylogenetic relationships within Neotropical Catasetinae (Epidendroideae, Orchidaceae), which is a suitable group to investigate phylogenetic incongruence because of hybridization processes between some of its constituent species. A comparison between trees derived from chloroplast and nuclear sequence data reflected strong, well-supported incongruence within Catasetum, Cycnoches, and Mormodes. As a result, outliers among chloroplast and nuclear data sets, and in experimental simulations, were successfully detected by PACo when using patristic distance matrices obtained from phylograms, but not from unit branch length trees. The performance of ParaFit was overall inferior compared to PACo, using either phylograms or unit branch lengths as input data. Because workflows for applying cophylogenetic analyses are not standardized yet, we provide a pipeline for executing PACo and ParaFit as well as displaying outlier associations in plots and trees by using the software R. The pipeline renders a method to identify outliers with high reliability and to assess the combinability of the independently derived data sets by means of statistical analyses.


Assuntos
Evolução Biológica , Cloroplastos/classificação , Cloroplastos/genética , Classificação/métodos , Orchidaceae/classificação , Orchidaceae/genética , Simbiose/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Filogenia , Software
8.
J Phycol ; 53(6): 1305-1324, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28915316

RESUMO

One of the most common marine dinophytes is a species known as Heterocapsa triquetra. When Stein introduced the taxon Heterocapsa, he formally based the type species H. triquetra on the basionym Glenodinium triquetrum. The latter was described by Ehrenberg and is most likely a species of Kryptoperidinium. In addition to that currently unresolved nomenclatural situation, the thecal plate composition of H. triquetra sensu Stein (1883) was controversial in the past. To clarify the debate, we collected material and established the strain UTKG7 from the Baltic Sea off Kiel (Germany, the same locality as Stein had studied), which was investigated using light and electron microscopy, and whose systematic position was inferred using molecular phylogenetics. The small motile cells (18-26 µm in length) had a biconical through fusiform shape and typically were characterized by a short asymmetrically shaped, horn-like protuberance at the antapex. A large spherical nucleus was located in the episome, whereas a single pyrenoid laid in the lower cingular plane. The predominant plate pattern was identified as apical pore complex (Po, cp?, X), 4', 2a, 6'', 6c, 5s, 5''', 2''''. The triradiate body scales were 254-306 nm in diameter, had 6 ridges radiating from a central spine, 9 peripheral and 3 radiating spines, and 12 peripheral bars as well as a central depression in the basal plate. Our work provides a clarification of morphological characters and a new, validly published name for this important but yet formally undescribed species of Heterocapsa: H. steinii sp. nov.


Assuntos
Dinoflagellida/citologia , Dinoflagellida/genética , Dinoflagellida/classificação , Dinoflagellida/ultraestrutura , Alemanha , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 97: 1-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708054

RESUMO

Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive data matrix of Catasetinae available so far with all major lineages represented. We used Maximum Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular phylogenies, with all established generic lineages and their relationships resolved and highly supported. According to comparative reconstruction approaches, the last common ancestor of Catasetinae was inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addition, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in Catasetinae and more generally in orchids as well.


Assuntos
Evolução Biológica , Orchidaceae/fisiologia , Sexo , Teorema de Bayes , Núcleo Celular/genética , Cloroplastos/genética , Flores/genética , Flores/fisiologia , Funções Verossimilhança , Orchidaceae/classificação , Orchidaceae/genética , Fenótipo , Filogenia
10.
Mol Phylogenet Evol ; 72: 1-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24384255

RESUMO

Major taxa of Ehretiaceae (including parasitic Lennoaceae) have not all been included in previous molecular phylogenetic analyses. As a result, the generic limits and their circumscriptions have not been satisfactorily resolved, despite its importance for floristic studies. To clarify which monophyletic groups can be recognized within the Ehretiaceae, sequences from one nuclear (ITS) and three plastid loci (rps16, trnL-trnF, trnS-trnG) were obtained from 67 accessions tentatively assigned to the Ehretiaceae (including 91 new GenBank entries) and covering the known diversity of the group. In phylogenetic analyses, Ehretiaceae were monophyletic when Lennoaceae were included and segregated into nine monophyletic lineages that correspond to accepted, morphologically distinct taxonomic units, namely Bourreria (s.l., paraphyletic in its current circumscription if not including Hilsenbergia), monotypic Cortesia, Ehretia (s.l., paraphyletic in its current circumscription if not including Carmona and Rotula), Halgania, monotypic Lennoa, Lepidocordia, Pholisma, Rochefortia, and Tiquilia. Bourreria and Ehretia have representatives in both the Old World and the New World, but all other taxa are restricted to the tropical and subtropical Americas (Cortesia, Lennoa, Lepidocordia, Pholisma, Rochefortia, Tiquilia) or Australia (Halgania). The historical biogeography of Ehretiaceae can be explained by few colonization events. The molecular trees are also discussed with respect to fruit evolution, where the fusion of endocarp parts may have taken place several times independently.


Assuntos
Boraginaceae/genética , Filogenia , DNA de Plantas/genética , Frutas/genética , Plastídeos/genética , Análise de Sequência de DNA
11.
Cladistics ; 30(5): 508-518, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34794245

RESUMO

Multiple family-level subdivisions of Boraginales have been proposed in the past. The relationships of several constituent genera have been enigmatic, including Codon (Codonaceae), Hoplestigma (Hoplestigmataceae), Pholisma (Lennoaceae), Vahlia (Vahliaceae), and Wellstedia (Wellstediaceae), all of which are included in the present study. We present a molecular analysis with four chloroplast loci, including 89 ingroup taxa and a broad outgroup sampling in the asterids. The genus Vahlia is excluded from Boraginales and appears to represent an early branching lineage of Lamiales. The study provides a well supported topology for the relationships within Boraginales, including all of the genera with previously unclear relationships. Within Boraginales, two major clades are recognized, with "herbaceaous" Boraginales I resolved as [Codonaceae,[Wellstediaceae,[Boraginaceae]]] and "woody" Boraginales II resolved as [Hydrophyllaceae I,[Hydrophyllaceae II,[Heliotropiaceae,[Cordiaceae,[Ehretiaceae,Lennoaceae]]]]. A close relationship between Ehretiaceae and Lennoaceae is well supported, but the exact placement of Lennoaceae remains unresolved. The Cordiaceae lineage includes the monotypic genus Coldenia and the aberrant western and central African genus Hoplestigma. Woody Boraginales II are retrieved in two highly supported clades. Hydrophyllaceae are retrieved in two separate clades, but with poor support. There appear to be clear morphological progressions in vegetative, floral, and fruit morphology in both major Boraginales lineages. Thus capsular fruits are found in the first branching lineages of both clades, whereas reduced seed numbers in indehiscent fruits predominate in the more derived phylogenetic positions. Based on these results, we advocate the recognition of eight morphologically well defined clades in the order, namely Boraginaceae s.str., Codonaceae, Cordiaceae (incl. Coldenia and Hoplestigmataceae), Ehretiaceae (incl. Lennoaceae), Heliotropiaceae, Hydrophyllaceae I and Hydrophyllaceae II, and Wellstediaceae.

12.
Sci Rep ; 14(1): 6689, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509105

RESUMO

During evolution of Dinophyceae, size reduction of the episome has occurred in several lineages (including unarmoured Amphidiniales and armoured Prorocentrales). One such species is Amphidinium crassum, whose taxonomic identity is elusive though showing morphological similarities with Oxytoxaceae (currently placed in armoured Peridiniales). Plankton samples were taken at the type locality of A. crassum in Kiel Bight (Baltic Sea) in order to establish monoclonal strains. The protist material was examined in detail using light and electron microscopy, and a long (2984 bp) ribosomal RNA sequence gained was part of a taxon sample comprising 206 specimen vouchers and representing the known molecular diversity of Dinophyceae. Cells of A. crassum were ovoid and exhibited a plate pattern po, 4', 1a, 6'', 5c, 4s, 5''', 1''''. In the molecular phylogeny, the species seemed to belong neither to Amphidiniales nor to Peridiniales but to Prorocentrales and clustered with other representatives of Oxytoxaceae. The morphological diversity of Prorocentrales appears thus expanded, and the group may include a number of previously unrecognised representatives unusually having five postcingular and only a single antapical plate. The taxonomic identity of A. crassum is clarified by epitypification, and the species notably exhibits both an apical pore and an additional epithecal pore.


Assuntos
Dinoflagellida , Dinoflagellida/genética , RNA Ribossômico/genética , Filogenia
13.
Mol Phylogenet Evol ; 67(1): 217-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333735

RESUMO

Endosymbiotic dinophytes are diverse and are found in a large variety of aquatic partners. They are colloquially coined zooxanthellae, and knowledge about those dinophytes with a coral as partner (i.e., Symbiodinium) is extensive. However, Zooxanthella nutricula has been specifically described based on material isolated from radiolarians, and its phylogenetic position within the dinophyte tree is unclear at present. We isolated genomic DNA and sequenced the ribosomal RNA genes from an endosymbiotic dinophyte found in a radiolarian. In phylogenetic analyses, the endosymbiont was distantly related to Symbiodinium and the Suessiales, but clustered together with members of the Peridiniales. Specifically, it was the sister lineage of a small group, whose members host a diatom as endosymbiont (i.e., the dinotoms). Endosymbiosis is thus of multiple origin within the dinophytes, and more research is necessary to work out ecological and morphological character traits that are congruent to the DNA trees.


Assuntos
Antozoários , Dinoflagellida/classificação , Filogenia , Simbiose , Animais , Teorema de Bayes , Análise por Conglomerados , DNA de Protozoário/genética , Dinoflagellida/genética , Dinoflagellida/fisiologia , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Microorganisms ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838236

RESUMO

Prorocentrum comprises dinophytes with several unique traits, including the presence of two large thecal plates and apical insertion of flagella. Species delimitation for many small and similar planktonic species is challenging, as SEM analyses and DNA sequence information of type material are rarely available. Based on a strain from the North Atlantic Prorocentrum spinulentum, sp. nov. is described here. Cells were small (9.0-12.8 µm long, 8.5-11.9 µm deep), oval to almost round in lateral view and moderately compressed. The ovoid nucleus was in median or slightly sub-median position on the cells ventral side. The plate surface appeared spiny in light microscopy with thecal pores visible in empty thecae. Electron microscopy revealed plates densely covered by relatively long spines and two size classes of thecal pores. The periflagellar area consisted of 8 platelets, and there was a prominent wing (ca. 1 µm wide and long) on platelet 1. The new species is distinct in DNA trees and embedded in the Prorocentrum shikokuense species group. It differs from the protologues of other small species of Prorocentrum by the unique combination of cell size and shape, the presence of long spines on the thecal plate surface and scattered thecal pores. The thorough morphological description of this species, representing a previously uncharacterised lineage within Prorocentrum, increases and improves our knowledge of the diversity within this important group of planktonic organisms.

15.
Sci Rep ; 13(1): 8593, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237053

RESUMO

Among the photosynthetically active dinophytes, the Kryptoperidiniaceae are unique in having a diatom as endosymbiont instead of the widely present peridinin chloroplast. Phylogenetically, it is unresolved at present how the endosymbionts are inherited, and the taxonomic identities of two iconic dinophyte names, Kryptoperidinium foliaceum and Kryptoperidinium triquetrum, are also unclear. Multiple strains were newly established from the type locality in the German Baltic Sea off Wismar and inspected using microscopy as well as molecular sequence diagnostics of both host and endosymbiont. All strains were bi-nucleate, shared the same plate formula (i.e., po, X, 4', 2a, 7'', 5c, 7s, 5''', 2'''') and exhibited a narrow and characteristically L-shaped precingular plate 7''. Within the molecular phylogeny of Bacillariaceae, endosymbionts were scattered over the tree in a highly polyphyletic pattern, even if they were gained from different strains of a single species, namely K. triquetrum. Notably, endosymbionts from the Baltic Sea show molecular sequences distinct from the Atlantic and the Mediterranean Sea, which is the first report of such a spatial fragmentation in a planktonic species of dinophytes. The two names K. foliaceum and K. triquetrum are taxonomically clarified by epitypification, with K. triquetrum having priority over its synonym K. foliaceum. Our study underlines the need of stable taxonomy for central questions in evolutionary biology.


Assuntos
Diatomáceas , Dinoflagellida , Diatomáceas/genética , Filogenia , Microscopia , Plâncton , Simbiose
16.
Mol Biol Evol ; 28(7): 2101-13, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21285031

RESUMO

The associations between pathogens and their hosts are complex and can result from a variety of evolutionary processes including codivergence, lateral transfer, or duplication. Papillomaviruses (PVs) are double-stranded DNA viruses ubiquitously present in mammals and are a suitable target for rigorous statistical tests of potential virus-host codivergence. We analyze the evolutionary dynamics of PV diversification by comparing robust phylogenies of PVs and their respective hosts using different statistical approaches to assess topological and branch-length congruence. Mammalian PVs segregated into four diverse major clades that overlapped to varying degrees in terms of their mammalian host lineages. The hypothesis that PVs and hosts evolved independently was globally rejected (P = 0.0001), although only 90 of 207 virus-host associations (43%) were significant in individual tests. Virus-host codivergence accounted roughly for one-third of the evolutionary events required to reconcile PV-host evolutionary histories. When virus-host associations were analyzed locally within each of the four viral clades, numerous independent topological congruencies were identified that were incompatible with respect to the global trees. These results support an evolutionary scenario in which early PV radiation was followed by independent codivergence between viruses within each of the major clades and their hosts. Moreover, heterogeneous groups of closely related PVs infecting non-related hosts suggest several interspecies transmission events. Our results argue thus for the importance of alternative events in PV evolution, in contrast to the prevailing opinion that these viruses show a high degree of host specificity and codivergence.


Assuntos
Evolução Molecular , Papillomaviridae/genética , Animais , Teorema de Bayes , Análise por Conglomerados , Especiação Genética , Interações Hospedeiro-Parasita/genética , Mamíferos , Filogenia
17.
Mol Phylogenet Evol ; 65(3): 883-91, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22960206

RESUMO

All amniotes are probably infected by specific papillomaviruses (PVs), but knowledge about PV diversity remains sparse. An insufficient taxon sampling, and a focus on humans as hosts, may perturb phylogenetic analyses leading to wrong conclusions about PV evolution. We performed a systematic approach to explore the diversity of PVs combining rolling circle amplification with the use of "universal" primers to search for the presence of novel PV sequences in animal samples. We communicate 12 sequences putatively corresponding to novel PVs gained from 10 host species in eight mammal families: Bovidae, Canidae, Cervidae, Equidae, Hominidae, Phocoenidae, Procyonidae and Pteropodidae. The phylogenetic position of the new sequences was inferred with an evolutionary placement algorithm under a Maximum Likelihood framework using a pre-computed, well-resolved tree constructed with the E1-E2-L1 gene sequences as a backbone. The new sequences were phylogenetically diverse and could be respectively placed with confidence within all four PV crown groups. The prevailing presence of sequences from the crown groups Alpha+Omikron-PVs and Beta+Xi-PVs may correspond to an increased viral diversity in these taxa, or rather reflect a combination of anthropocentric bias and preferential amplification from commonly used "universal" primers. Our results combined with literature data support the view that the number and diversity of animal PVs is overwhelmingly large.


Assuntos
Mamíferos/virologia , Papillomaviridae/classificação , Filogenia , Algoritmos , Animais , Primers do DNA , DNA Viral/genética , Evolução Molecular , Funções Verossimilhança , Papillomaviridae/genética , Alinhamento de Sequência , Análise de Sequência de DNA
18.
J Gen Virol ; 92(Pt 7): 1585-1594, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21471318

RESUMO

Viral warts from immunosuppressed organ transplant recipients (OTR) persist over years and may progress into non-melanoma skin cancer. The types of human papillomaviruses (HPV) in such lesions are different from that seen in the general population. A subset of these lesions is not infected with the classical wart-associated HPV types. In order to gain a better understanding of the HPV types in those lesions, we isolated ten novel HPVs from persisting keratotic lesions of immunosuppressed OTRs by rolling circle amplification and subsequent long-template PCR. Additionally, we sequenced and characterized the whole genome of the ten novel HPV types. Phylogenetic analyses revealed that nine HPV types belonged to the genus Gammapapillomavirus (γ-PV) and one to the genus Betapapillomavirus. In a phylogenetic analysis using L1 fragments of human and non-human PV types, primate papillomaviruses and our novel HPV types nested within the genus γ-PV in a highly polyphyletic pattern. This study significantly broadens the knowledge concerning the diversity and evolution of the poorly known γ-PV types.


Assuntos
Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Dermatopatias/virologia , Idoso , Feminino , Genoma Viral , Genômica , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Transplante de Órgãos/efeitos adversos , Papillomaviridae/classificação , Infecções por Papillomavirus/etiologia , Filogenia , Dermatopatias/imunologia
19.
Mol Phylogenet Evol ; 59(1): 34-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195783

RESUMO

The phylogenetic position of cetacean papillomaviruses (PVs: Omikron-PVs and Upsilon-PVs) varies depending on the region of the genome analysed. They cluster together with Alpha-PVs when analysing early genes and with Xi-PVs and Phi-PVs when analysing late genes. We cloned and sequenced the complete genomes of five novel PVs, sampled from genital and oesophageal lesions of free-ranging cetaceans: Delphinus delphis (DdPV1), Lagenorhynchus acutus (TtPV3 variant), and Phocoena phocoena (PphPV1, PphPV2, and PphPV3). Using Maximum Likelihood and Bayesian approaches, all cetacean PVs constituted a monophyletic group with Alpha-, Omega-, and Dyodelta-PVs as inferred from E1-E2 early genes analyses, thus matching the shared phenotype of mucosal tropism. However, cetacean PVs, with the exception of PphPV3, were the closest relatives of Xi-PVs and Phi-PVs in L2-L1 late genes analyses, isolated from cow and goat, thus reflecting the close relationship between Cetacea and Artiodactyla. Our results are compatible with a recombination between ancestral PVs infecting the Cetartiodactyla lineage. Our study supports a complex evolutionary scenario with multiple driving forces for PV diversification, possibly including recombination and also interspecies transmission.


Assuntos
Cetáceos/virologia , Papillomaviridae/genética , Animais , Teorema de Bayes , Evolução Biológica , Variação Genética , Genoma Viral , Funções Verossimilhança , Masculino , Dados de Sequência Molecular , Papillomaviridae/classificação , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/transmissão , Doenças do Pênis/virologia , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Doenças Virais Sexualmente Transmissíveis/patologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Proteínas Virais/genética
20.
Harmful Algae ; 104: 101956, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023073

RESUMO

Gonyaulacales include a considerable number of harmful algae and to understand their origin and rise, knowledge of the evolutionary relationships is necessary. Many scientific names of protists introduced prior to the availability of DNA analytics are ambiguous and impede communication about biological species and their traits in the microbial world. Strains of Lingulodinium polyedra were established from its type locality in the Kiel Fjord (Germany) to clarify its taxonomy. Moreover, the phylogeny of Gonyaulacales was inferred based on 329 rRNA sequence accessions compiled in a curated sequence data base, with as much as possible type material equivalents included. Gonyaulacales were monophyletic and segregated into seven lineages at high systematic level, of which †Lingulodiniaceae constituted the first branch of the Gonyaulacales. Their type species had a plate formula APC (Po, X, cp), 3', 3a, 6'' 6c, 6s, 6''', 2'''' and is taxonomically clarified by epitypification. Recommendations for this important taxonomic tool are provided, with a focus on microorganisms. Most gonyaulacalean taxa established at generic rank are monophyletic, with Alexandrium, Coolia and Gonyaulax as notable exceptions. From an evolutionary perspective, gonyaulacalean dinophytes with quinqueform hypotheca are monophyletic and derive from a paraphyletic group showing the sexiform configuration.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Filogenia , RNA Ribossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA