RESUMO
High-performance laser power converters are crucial for laser wireless power transmission systems. Through the optimization of the resistive thermal annealing temperature applied to the laser power converter, the conversion efficiency reaches 55.0%. For 830â nm laser irradiation, the conversion efficiency further elevates to 59.3%. The potential for improvement remains substantial, with an anticipated increase to 63.8% achievable through the optimization of current matching at this specific wavelength. Moreover, the reliability of the laser power converter is demonstrated by its ability to 1,000 hours of operation at an elevated temperature of 180°C.
RESUMO
To enhance the performance of multi-junction photovoltaics, we investigated three different InP-based tunnel junction designs: p++-InGaAs/n++-InP tunnel junction, p++-InGaAs/i-InGaAs-/n++-InP tunnel junction, and p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction. The p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction demonstrated a peak tunneling current density of 495â A/cm2 and a resistivity of 9.3 × 10-4 Ωcm2, allowing the tunnel junction device to operate at a concentration over 30000 suns. This was achieved by inserting an undoped InGaAs quantum well at the p++-InGaAs/n++InGaAs junction interfaces, which enhanced its stability within the operating temperature range of multi-junction solar cells. Moreover, the p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction exhibited the lowest resistance.
RESUMO
An erratum is presented to modify a calculating error in our published manuscript ["High-power 970â nm semiconductor disk laser" Opt. Express31, 43963 (2023)10.1364/OE.506462 [CrossRef]]. All results throughout the manuscript and its conclusions are unaffected by this correction and remain valid.
RESUMO
Laser Power Converters (LPCs) are components of the laser wireless power transmission (LWPT) system receiving laser power. This paper proposes a comprehensive test method that employs continuous, pulse-pause, and short-time techniques to evaluate the performance of six-junction GaAs LPCs operating with an optical input at 808â nm. Additionally, we investigate the performance of LPCs with different areas and achieve a conversion efficiency over 60%. Furthermore, we apply LPCs with varying areas to wireless information transmission and successfully achieve a response time of 1.7 µs.
RESUMO
Semiconductor disk lasers (SDLs) have emerged at the frontier of laser technologies. Here, the chip design, packaging process, resonator, pumping strategy, etc. are optimized for the performance improvement of a 970â nm SDL. After optimization, a power of 70.3 W is attained under continuous wave (CW) operation, and the corresponding thermal resistance is around 0.49â K/W. The laser is highly efficient with a maximum slope efficiency of 58.2% and the pump threshold is only around 1.83â kW/cm2. Furthermore, the emission performances under quasi-continuous wave (QCW) pumping are also explored. Setting the duty cycle to about 11%, the chips can output a peak power of 138 W without thermal rollover, and the single pulse energy can reach about 13.6 mJ. As far as we know, they are the best results in terms of power/energy in this wavelength SDL. These explorations may help to understand the thermal characteristics in high-power SDLs and may also be regarded as an extension and enrichment of the earlier works on this topic.
RESUMO
A p++-AlGaAs: C/n++-InGaP: Te tunnel junction with a record peak tunneling current density of 5518 A/cm2 was developed. This was achieved by inserting a 6.6 Å undoped GaAs quantum well at the junction interface, and the numerical model demonstrated that trap-assisted tunneling contributes to the high peak tunneling current. Furthermore, we found that the p++-AlGaAs: C/n++-InGaP: Si + Te tunnel junctions have lower resistance and better stability than p++-AlGaAs: C/n++-InGaP: Te tunnel junctions in the operating temperature range of the multijunction solar cells, and the peak tunneling current density of the p++-AlGaAs: C/n++-InGaP: Si + Te tunnel junctions excess 3000 A/cm2 with a voltage drop of 7.5â mV at 10000 suns.
RESUMO
Six-junction GaAs laser power converts (LPCs) were designed and fabricated. Each subcell is vertically connected by p++-AlGaAs: C/n++-AlGaAs: Si: Te (1:2) tunnel junction with good thermal stability and a record peak tunneling current density of 1867 A/cm2. The I-V characteristics of LPCs with an aperture of 10×10 mm2 were investigated as a function of laser power and temperature. Maximum conversion efficiency and output power of 57.7% and 15.4 W, respectively, and a continuous stable operation at 22.9 W for over 550 hours were demonstrated. The temperature coefficient of conversion efficiency and open-circuit voltage were -0.197%abs/°C and -8.15 mV/°C, respectively, under 808 nm laser illumination of 21.0 W. Furthermore, an array of 100 large-scale (41×46 mm2) LPCs with an output power of 179 W under 1 kW laser irradiation at 20 m wireless transmission was developed.
RESUMO
InGaAs metamorphic laser power converters (LPCs) have the potential to deliver electrical energy over distances of several kilometers. In this study, metalorganic chemical vapor deposition (MOCVD) was used to grow InGaAs-based LPCs with an absorption wavelength of 1064â nm. At step thicknesses of 2800â nm, overshoot thicknesses of 6000â nm, reverse component and thicknesses of 2.4% and 700â nm, respectively, a surface roughness of 6.0â nm and InGaAs (24%) lattice relaxation of 93.7% of the InGaAs metamorphic buffer were obtained. The I-V characteristics of LPCs with 10 × 10 mm2 apertures were investigated as a function of laser power and temperature. The maximum conversion efficiency of 44.1% and 550 hours of continuous stable operation at 4 W were demonstrated. Under 1064â nm laser illumination of 4 W, the temperature coefficients for the conversion efficiency and open-circuit voltage were -0.1%abs/°C and -1.6â mV/°C, respectively, and the LPC output power fluctuation was less than 0.5% during 216 hours of continuous temperature change from 20 to 100°C.
RESUMO
High electro-optical conversion efficiency is one of the most distinctive features of semiconductor lasers as compared to other types of lasers. Its further increase remains a significant objective. Further enhancing the efficiency of edge-emitting lasers (EEL), which represent the highest efficiency among semiconductor lasers at present, is challenging. The efficiency of vertical cavity surface emitting lasers (VCSELs) has always been relatively low compared to EEL. This paper, combining modeling with experiments, demonstrates the potential of multi-junction cascaded VCSELs to achieve high efficiency beyond that of EELs, our simulations show, that a 20-junction VCSEL can achieve an efficiency of more than 88% at room temperature. We fabricated VCSEL devices with different numbers of junctions and compared their energy efficiency. 15-junction VCSELs achieved a maximum efficiency of 74% at room temperature under nanosecond driving current, the corresponding differential quantum efficiency exceeds 1100%, being the largest electro-optical conversion efficiency and differential quantum efficiency reported until now for VCSELs.