Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 6785707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242181

RESUMO

Breast cancer is an important factor affecting human health. This issue has various diagnosis process which were evolved such as mammography, fine needle aspirate, and surgical biopsy. These techniques use pathological breast cancer images for diagnosis. Breast cancer surgery allows the forensic doctor to histologist to access the microscopic level of breast tissues. The conventional method uses an optimized radial basis neural network using a cuckoo search algorithm. Existing radial basis neural network techniques utilized feature extraction and reduction parts separately. It is proposed that it overcomes the CNN approach for all the feature extraction and classification process to reduce time complexity. In this proposed method, a convolutional neural network is proposed based on an artificial fish school algorithm. The breast cancer image dataset is taken from cancer imaging archives. In the preprocessing step of classification, the breast cancer image is filtered with the support of a wiener filter for classification. The convolutional neural network has set the intense data of an image and is used to remove the features. After executing the extraction procedure, the reduction process is performed to speed up the train and test data processing. Here, the artificial fish school optimization algorithm is utilized to give the direct training data to the deep convolutional neural network. The extraction, reduction, and classification of features are utilized in the single deep convolutional neural network process. In this process, the optimization technique helps to decrease the error rate and increases the performance efficiency by finding the number of epochs and training images to the Deep CNN. In this system, the normal, benign, and malignant tissues are predicted. By comparing the existing RBF technique with the cuckoo search algorithm, the presented model attains the outcome in the way of sensitivity, accuracy, specificity, F1 score, and recall.


Assuntos
Neoplasias da Mama , Algoritmos , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Peixes , Humanos , Redes Neurais de Computação , Instituições Acadêmicas
2.
Comput Intell Neurosci ; 2022: 9441357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281186

RESUMO

In the present medical age, the focus on prevention and prediction is achieved using the medical internet of things. With a broad and complete framework, effective behavioral, environmental, and physiological criteria are necessary to govern the major healthcare sectors. Wearables play an essential role in personal health monitoring data measurement and processing. We wish to design a variable and flexible frame for broad parameter monitoring in accordance with the convenient mode of wearability. In this study, an innovative prototype with a handle and a modular IoT portal is designed for environmental surveillance. The prototype examines the most significant parameters of the surroundings. This strategy allows a bidirectional link between end users and medicine via the IoT gateway as an intermediate portal for users with IoT servers in real time. In addition, the doctor may configure the necessary parameters of measurements via the IoT portal and switch the sensors on the wearables as a real-time observer for the patient. Thus, based on goal analysis, patient situation, specifications, and requests, medications may define setup criteria for calculation. With regard to privacy, power use, and computation delays, we established this system's performance link for three common IoT healthcare circumstances. The simulation results show that this technique may minimize processing time by 25.34%, save energy level up to 72.25%, and boost the privacy level of the IoT medical device to 17.25% compared to the benchmark system.


Assuntos
Atenção à Saúde , Eletrocardiografia , Humanos , Monitorização Imunológica
3.
Comput Math Methods Med ; 2022: 7120983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341015

RESUMO

Medical data processing is exponentially increasing day by day due to the frequent demand for many applications. Healthcare data is one such field, which is dynamically growing day by day. In today's scenario, an enormous amount of sensing devices and data collection units have been employed to generate and collect medical data all over the world. These healthcare devices will result in big real-time data streams. Hence, healthcare-based big data analytics and monitoring have gained hawk-eye importance but needs improvisation. Recently, machine and deep learning algorithms have gained importance to analyze huge amounts of medical data, extract the information, and even predict the future insights of diseases and also cope with the huge volume of data. But applying the learning models to handle big/medical data streams remains to be a challenge among the researchers. This paper proposes the novel deep learning electronic record search engine algorithm (ERSEA) along with firefly optimized long short-term memory (LSTM) model for better data analytics and monitoring. The experimentations have been carried out using Apache Spark using the different medical respiratory data. Finally, the proposed framework results are contrasted with existing models. It shows the accuracy, sensitivity, and specificity like 94%, 93.5%, and 94% for less than 5 GB dataset, and also, more than 5 GB it provides 94%, 92%, and 93% to prove the extraordinary performance of the proposed framework.


Assuntos
Algoritmos , Big Data , Atenção à Saúde , Previsões , Humanos
4.
Comput Intell Neurosci ; 2022: 4487254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251147

RESUMO

Transforming human intentions into patterns to direct the devices connected externally without any body movements is called Brain-Computer Interface (BCI). It is specially designed for rehabilitation patients to overcome their disabilities. Electroencephalogram (EEG) signal is one of the famous tools to operate such devices. In this study, we planned to conduct our research with twenty subjects from different age groups from 20 to 28 and 29 to 40 using three-electrode systems to analyze the performance for developing a mobile robot for navigation using band power features and neural network architecture trained with a bioinspired algorithm. From the experiment, we recognized that the maximum classification performance was 94.66% for the young group and the minimum classification performance was 94.18% for the adult group. We conducted a recognizing accuracy test for the two contrasting age groups to interpret the individual performances. The study proved that the recognition accuracy was maximum for the young group and minimum for the adult group. Through the graphical user interface, we conducted an online test for the young and adult groups. From the online test, the same young-aged people performed highly and actively with an average accuracy of 94.00% compared with the adult people whose performance was 92.00%. From this experiment, we concluded that, due to the age factor, the signal generated by the subjects decreased slightly.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Aprendizado de Máquina , Adulto , Fatores Etários , Algoritmos , Humanos , Redes Neurais de Computação , Interface Usuário-Computador , Adulto Jovem
5.
J Healthc Eng ; 2022: 7873300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035858

RESUMO

Glaucoma is a disease where the optic nerve of the eyes is smashed up due to the building up of pressure inside the vision point. This has no symptoms at the initial stages, and hence, patients with this disease cannot identify them at the beginning stage. It is explained as if the pressure in the eye increases, then it will hurt the optic nerve which sends images to the brain. This will lead to permanent vision loss or total blindness. The existing method used for the detection of glaucoma includes k-nearest neighbour and support vector machine algorithms. The k-nearest neighbour algorithm and support vector machine algorithm are the machine learning methods for both categorization and degeneration problems. The drawback in using these algorithms is that we can get accuracy level only up to 80%. The proposed methods in this study focus on the convolution neural network for the recognition of glaucoma. In this study, 2 architectures of VGG, Inception method, AlexNet, GoogLeNet, and ResNet architectures which provide accuracy levels up to 100% are presented.


Assuntos
Glaucoma , Algoritmos , Fundo de Olho , Glaucoma/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
6.
J Healthc Eng ; 2021: 1552641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976322

RESUMO

Recent advances in electronics and microelectronics have aided the development of low-cost devices that are widely used as well-being or preventive monitoring devices by many people. Remote health monitoring, which includes wearable sensors, actuators, and modern communication and information systems, offers effective programs that allow people to live peacefully in their own homes while also being protected in some way. High-frequency noise, power-line interface, and baseline drift are prevalent during the data-acquisition system of an ECG signal, and they can limit signal understanding. They (noises) must be isolated in order to provide an appropriate diagnostic of the patient. When removing high-frequency components (noise) from an ECG signal with an FIR filter, the critical path delay increases considerably as the filter's duration increases. To reduce high-frequency noise, simple moving average filters with pipelining and look-ahead transformation techniques are extensively used in this study. With the use of pipelining and look-ahead techniques, the only objective is to increase the clock speed of the designs. The moving average filters (conventional and proposed) were created on an Altera Cyclone IV FPGA EP4CE115F29C7 chip using the Quartus II software v13.1 tool. Finally, performance metrics such logic elements, clock speed, and power consumption were compared and studied thoroughly. The recursive pipelined 8-tap MA filter with look-ahead approach outperforms the other designs (685.48 MHz) in this investigation.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrocardiografia , Eletrônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA