Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
2.
Emerg Infect Dis ; 27(5): 1522-1524, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605869

RESUMO

Uncertainty remains about how long the protective immune responses against severe acute respiratory syndrome coronavirus 2 persists, and suspected reinfection in recovered patients has been reported. We describe a case of reinfection from distinct virus lineages in Brazil harboring the E484K mutation, a variant associated with escape from neutralizing antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Brasil , Genômica , Humanos , Mutação , Reinfecção , Glicoproteína da Espícula de Coronavírus/genética
3.
Emerg Infect Dis ; 27(5): 1393-1404, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900172

RESUMO

Paraguay has been severely affected by emergent Zika and chikungunya viruses, and dengue virus is endemic. To learn more about the origins of genetic diversity and epidemiologic history of these viruses in Paraguay, we deployed portable sequencing technologies to strengthen genomic surveillance and determine the evolutionary and epidemic history of arthropod-borne viruses (arboviruses). Samples stored at the Paraguay National Central Laboratory were sequenced and subjected to phylogenetic analysis. Among 33 virus genomes generated, we identified 2 genotypes of chikungunya and 2 serotypes of dengue virus that circulated in Paraguay during 2014-2018; the main source of these virus lineages was estimated to be Brazil. The evolutionary history inferred by our analyses precisely matched the available travel history of the patients. The genomic surveillance approach used was valuable for describing the epidemiologic history of arboviruses and can be used to determine the origins and evolution of future arbovirus outbreaks.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Brasil , Variação Genética , Humanos , Paraguai , Filogenia
4.
Virol J ; 18(1): 222, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789293

RESUMO

BACKGROUND: We report a genomic surveillance of SARS-CoV-2 lineages circulating in Paraná, southern Brazil, from March 2020 to April 2021. Our analysis, based on 333 genomes, revealed that the first variants detected in the state of Paraná in March 2020 were the B.1.1.33 and B.1.1.28 variants. The variants B.1.1.28 and B.1.1.33 were predominant throughout 2020 until the introduction of the variant P.2 in August 2020 and a variant of concern (VOC), Gamma (P.1), in January 2021. The VOC Gamma, a ramification of the B.1.1.28 lineage first detected in Manaus (northern Brazil), has grown rapidly since December 2020 and was thought to be responsible for the deadly second wave of COVID-19 throughout Brazil. METHODS: The 333 genomic sequences of SARS-CoV-2 from March 2020 to April 2021 were generated as part of the genomic surveillance carried out by Fiocruz in Brazil Genomahcov Fiocruz. SARS-CoV-2 sequencing was performed using representative samples from all geographic areas of Paraná. Phylogenetic analyses were performed using the 333 genomes also included other SARS-CoV-2 genomes from the state of Paraná and other states in Brazil that were deposited in the GISAID. In addition, the time-scaled phylogenetic tree was constructed with up to 3 random sequences of the Gamma variant from each state in Brazil in each month of 2021. In this analysis we also added the sequences identified as the B.1.1.28 lineage of the Amazonas state and and the Gamma-like-II (P.1-like-II) lineage identified in different regions of Brazil. RESULTS: Phylogenetic analyses of the SARS-CoV-2 genomes that were previously classified as the VOC Gamma lineage by WHO/PANGO showed that some genomes from February to April 2021 branched in a monophyletic clade and that these samples grouped together with genomes recently described with the lineage Gamma-like-II. Additionally, a new mutation (E661D) in the spike (S) protein has been identified in nearly 10% of the genomes classified as the VOC Gamma from Paraná in March and April 2021.Finally, we analyzed the correlation between the lineage and the Gamma variant frequency, age group (patients younger or older than 60 years old) and the clinical data of 86 cases from the state of Paraná. CONCLUSIONS: Our results provided a reliable picture of the evolution of the SARS-CoV-2 pandemic in the state of Paraná characterized by the dominance of the Gamma strain, as well as a high frequencies of the Gamma-like-II lineage and the S:E661D mutation. Epidemiological and genomic surveillance efforts should be continued to unveil the biological relevance of the novel mutations detected in the VOC Gamma in Paraná.


Assuntos
COVID-19/virologia , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Pessoa de Meia-Idade , Mutação , Filogenia , Vigilância da População , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento Completo do Genoma
5.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Assuntos
Surtos de Doenças , Genoma Viral , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/genética , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callithrix/virologia , Cebus/virologia , Feminino , Variação Genética , Humanos , Incidência , Leontopithecus/virologia , Masculino , Mosquitos Vetores/virologia , Filogenia , Filogeografia , Sequenciamento Completo do Genoma , Febre Amarela/virologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade
6.
Avian Pathol ; 49(6): 611-620, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32746617

RESUMO

Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.


Assuntos
Orthoreovirus Aviário/genética , Doenças das Aves Domésticas/virologia , Tenossinovite/veterinária , Animais , Teorema de Bayes , Brasil/epidemiologia , Evolução Molecular , Genótipo , Orthoreovirus Aviário/classificação , Filogenia , Reação em Cadeia da Polimerase/veterinária , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Tenossinovite/epidemiologia , Tenossinovite/virologia
7.
Mem Inst Oswaldo Cruz ; 115: e190461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187328

RESUMO

Phylogenetic analyses were crucial to elucidate the origin and spread of the pandemic human immunodeficiency virus type 1 (HIV-1) group M virus, both during the pre-epidemic period of cryptic dissemination in human populations as well as during the epidemic phase of spread. The use of phylogenetics and phylodynamics approaches has provided important insights to track the founder events that resulted in the spread of HIV-1 strains across vast geographic areas, specific countries and within geographically restricted communities. In the recent years, the use of phylogenetic analysis combined with the huge availability of HIV sequences has become an increasingly important approach to reconstruct HIV transmission networks and understand transmission dynamics in concentrated and generalised epidemics. Significant efforts to obtain viral sequences from newly HIV-infected individuals could certainly contribute to detect rapidly expanding HIV-1 lineages, identify key populations at high-risk and understand what public health interventions should be prioritised in different scenarios.


Assuntos
Infecções por HIV/transmissão , HIV-1/genética , Filogeografia , Animais , Análise por Conglomerados , Gorilla gorilla , Infecções por HIV/virologia , Humanos , Filogenia
8.
Mem Inst Oswaldo Cruz ; 115: e200183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32901696

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world during 2020, but the precise time in which the virus began to spread locally is difficult to trace for most countries. Here, we estimate the probable onset date of the community spread of SARS-CoV-2 for heavily affected countries from Western Europe and the Americas on the basis of the cumulative number of deaths reported during the early stage of the epidemic. Our results support that SARS-CoV-2 probably started to spread locally in all western countries analysed between mid-January and mid-February 2020, thus long before community transmission was officially recognised and control measures were implemented.


Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , América/epidemiologia , Betacoronavirus , COVID-19 , Infecções Comunitárias Adquiridas/transmissão , Infecções Comunitárias Adquiridas/virologia , Infecções por Coronavirus/transmissão , Europa (Continente)/epidemiologia , Humanos , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2
9.
J Virol ; 90(18): 8160-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384663

RESUMO

UNLABELLED: The high incidence of AIDS cases and the dominance of HIV-1 subtype C infections are two features that distinguish the HIV-1 epidemic in the two southernmost Brazilian states (Rio Grande do Sul [RS] and Santa Catarina [SC]) from the epidemic in other parts of the country. Nevertheless, previous studies on HIV molecular epidemiology were conducted mainly in capital cities, and a more comprehensive understanding of factors driving this unique epidemic in Brazil is necessary. Blood samples were collected from individuals in 13 municipalities in the Brazilian southern region. HIV-1 env and pol genes were submitted to phylogenetic analyses for assignment of subtype, and viral population phylodynamics were reconstructed by applying Skygrid and logistic coalescent models in a Bayesian analysis. A high prevalence of subtype C was observed in all sampled locations; however, an increased frequency of recombinant strains was found in RS, with evidence for new circulating forms (CRFs). In the SC state, subtype B and C epidemics were associated with distinct exposure groups. Although logistic models estimated similar growth rates for HIV-1 subtype C (HIV-1C) and HIV-1B, a Skygrid plot reveals that the former epidemic has been expanding for a longer time. Our results highlight a consistent expansion of HIV-1C in south Brazil, and we also discuss how heterosexual and men who have sex with men (MSM) transmission chains might have impacted the current prevalence of HIV-1 subtypes in this region. IMPORTANCE: The AIDS epidemic in south Brazil is expanding rapidly, but the circumstances driving this condition are not well known. A high prevalence of HIV-1 subtype C was reported in the capital cities of this region, in contrast to the subtype B dominance in the rest of the country. This study sought to comparatively investigate the HIV-1 subtype B and C epidemics by sampling individuals from several cities in the two states with the highest AIDS incidences in Brazil. Our analyses showed distinct epidemic growth curves for the two epidemics, and we also found evidence suggesting that separate transmission chains may be impacting the viral phylodynamics and the emergence of new recombinant forms.


Assuntos
Síndrome da Imunodeficiência Adquirida/epidemiologia , HIV-1/classificação , HIV-1/genética , Epidemiologia Molecular , Síndrome da Imunodeficiência Adquirida/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue/virologia , Brasil/epidemiologia , Criança , Pré-Escolar , Cidades/epidemiologia , Análise por Conglomerados , Demografia , Feminino , Genótipo , HIV-1/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
10.
J Virol ; 89(24): 12341-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423943

RESUMO

UNLABELLED: The phylogeographic history of the Brazilian HIV-1 subtype C (HIV-1C) epidemic is still unclear. Previous studies have mainly focused on the capital cities of Brazilian federal states, and the fact that HIV-1C infections increase at a higher rate than subtype B infections in Brazil calls for a better understanding of the process of spatial spread. A comprehensive sequence data set sampled across 22 Brazilian locations was assembled and analyzed. A Bayesian phylogeographic generalized linear model approach was used to reconstruct the spatiotemporal history of HIV-1C in Brazil, considering several potential explanatory predictors of the viral diffusion process. Analyses were performed on several subsampled data sets in order to mitigate potential sample biases. We reveal a central role for the city of Porto Alegre, the capital of the southernmost state, in the Brazilian HIV-1C epidemic (HIV-1C_BR), and the northward expansion of HIV-1C_BR could be linked to source populations with higher HIV-1 burdens and larger proportions of HIV-1C infections. The results presented here bring new insights to the continuing discussion about the HIV-1C epidemic in Brazil and raise an alternative hypothesis for its spatiotemporal history. The current work also highlights how sampling bias can confound phylogeographic analyses and demonstrates the importance of incorporating external information to protect against this. IMPORTANCE: Subtype C is responsible for the largest HIV infection burden worldwide, but our understanding of its transmission dynamics remains incomplete. Brazil witnessed a relatively recent introduction of HIV-1C compared to HIV-1B, but it swiftly spread throughout the south, where it now circulates as the dominant variant. The northward spread has been comparatively slow, and HIV-1B still prevails in that region. While epidemiological data and viral genetic analyses have both independently shed light on the dynamics of spread in isolation, their combination has not yet been explored. Here, we complement publically available sequences and new genetic data from 13 cities with epidemiological data to reconstruct the history of HIV-1C spread in Brazil. The combined approach results in more robust reconstructions and can protect against sampling bias. We found evidence for an alternative view of the HIV-1C spatiotemporal history in Brazil that, contrary to previous explanations, integrates seamlessly with other observational data.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/genética , HIV-1/genética , Filogenia , Brasil/epidemiologia , Feminino , Humanos , Masculino , Filogeografia
12.
Infect Dis Model ; 9(2): 557-568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38545442

RESUMO

In late March 2020, SARS-CoV-2 arrived in Manaus, Brazil, and rapidly developed into a large-scale epidemic that collapsed the local health system and resulted in extreme death rates. Several key studies reported that ∼76% of residents of Manaus were infected (attack rate AR≃76%) by October 2020, suggesting protective herd immunity had been reached. Despite this, an unexpected second wave of COVID-19 struck again in November and proved to be larger than the first, creating a catastrophe for the unprepared population. It has been suggested that this could be possible if the second wave was driven by reinfections. However, it is widely reported that reinfections were at a low rate (before the emergence of Omicron), and reinfections tend to be mild. Here, we use novel methods to model the epidemic from mortality data without considering reinfection-caused deaths and evaluate the impact of interventions to explain why the second wave appeared. The method fits a "flexible" reproductive number R0(t) that changes over the epidemic, and it is demonstrated that the method can successfully reconstruct R0(t) from simulated data. For Manaus, the method finds AR≃34% by October 2020 for the first wave, which is far less than required for herd immunity yet in-line with seroprevalence estimates. The work is complemented by a two-strain model. Using genomic data, the model estimates transmissibility of the new P.1 virus lineage as 1.9 times higher than that of the non-P.1. Moreover, an age class model variant that considers the high mortality rates of older adults show very similar results. These models thus provide a reasonable explanation for the two-wave dynamics in Manaus without the need to rely on large reinfection rates, which until now have only been found in negligible to moderate numbers in recent surveillance efforts.

13.
Annu Rev Virol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848594

RESUMO

South American ecosystems host astonishing biodiversity, with potentially great richness in viruses. However, these ecosystems have not yet been the source of any widespread, epidemic viruses. Here we explore a set of putative causes that may explain this apparent paradox. We discuss that human presence in South America is recent, beginning around 14,000 years ago; that few domestications of native species have occurred; and that successive immigration events associated with Old World virus introductions reduced the likelihood of spillovers and adaptation of local viruses into humans. Also, the diversity and ecological characteristics of vertebrate hosts might serve as protective factors. Moreover, although forest areas remained well preserved until recently, current brutal, sudden, and large-scale clear cuts through the forest have resulted in nearly no ecotones, which are essential for creating an adaptive gradient of microbes, hosts, and vectors. This may be temporarily preventing virus emergence. Nevertheless, the mid-term effect of such drastic changes in habitats and landscapes, coupled with explosive urbanization and climate changes, must not be overlooked by health authorities.

14.
Microbiol Spectr ; 12(3): e0383123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315011

RESUMO

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE: Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
15.
Nat Commun ; 15(1): 1837, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418815

RESUMO

Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , América Latina/epidemiologia , Pandemias , Filogenia , COVID-19/epidemiologia , Região do Caribe/epidemiologia
16.
Int J Infect Dis ; 145: 107090, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762045

RESUMO

OBJECTIVES: Encephalitis is a severe neurological syndrome for which herpesvirus and enteroviruses are the most common etiological agents. Arboviruses, a wildly diverse group of pathogens, are also critical epidemiological agents associated with encephalitis. In Brazil, little is known about the causative agents of encephalitis. METHODS: We conducted a hospital surveillance for encephalitis between 2020 and 2022. Molecular (RT-PCR and qPCR) and serological (virus-specific IgM and viral antigens) techniques were performed in cerebrospinal fluid and serum samples obtained from study participants. RESULTS: In the 43 participants evaluated, the etiologic agent or the presence of IgM was detected in 16 (37.2%). Nine (20.9%) cases were positive for chikungunya virus (CHIKV), three (7.0%) for dengue virus, two (4.7%) for human adenovirus, one (2.3%) for varicella-zoster virus, and one (2.3%) for enterovirus. Whole-genome sequencing revealed that the CHIKV identified belongs to the East/Central/South African lineage. CONCLUSION: Herein, CHIKV is a common pathogen identified in encephalitis cases. Our results reinforce previous evidence that chikungunya represents a significant cause of encephalitis during CHIKV outbreaks and epidemics and add to existing information on the epidemiology of encephalitis in Brazil.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Brasil/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Masculino , Feminino , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/sangue , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Anticorpos Antivirais/sangue , Encefalite Viral/epidemiologia , Encefalite Viral/virologia , Encefalite Viral/diagnóstico , Imunoglobulina M/sangue , Idoso , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Lactente , Filogenia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/isolamento & purificação , Enterovirus/isolamento & purificação , Enterovirus/genética , Sequenciamento Completo do Genoma
17.
Microbiol Spectr ; 12(6): e0421823, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651879

RESUMO

SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Brasil/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Análise Espaço-Temporal , Genoma Viral , Filogenia , Pandemias
18.
Mem Inst Oswaldo Cruz ; 108(6): 735-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24037196

RESUMO

Typical human immunodeficiency virus-1 subtype B (HIV-1B) sequences present a GPGR signature at the tip of the variable region 3 (V3) loop; however, unusual motifs harbouring a GWGR signature have also been isolated. Although epidemiological studies have detected this variant in approximately 17-50% of the total infections in Brazil, the prevalence of B"-GWGR in the southernmost region of Brazil is not yet clear. This study aimed to investigate the C2-V3 molecular diversity of the HIV-1B epidemic in southernmost Brazil. HIV-1 seropositive patients were ana-lysed at two distinct time points in the state of Rio Grande do Sul (RS98 and RS08) and at one time point in the state of Santa Catarina (SC08). Phylogenetic analysis classified 46 individuals in the RS98 group as HIV-1B and their molecular signatures were as follows: 26% B"-GWGR, 54% B-GPGR and 20% other motifs. In the RS08 group, HIV-1B was present in 32 samples: 22% B"-GWGR, 59% B-GPGR and 19% other motifs. In the SC08 group, 32 HIV-1B samples were found: 28% B"-GWGR, 59% B-GPGR and 13% other motifs. No association could be established between the HIV-1B V3 signatures and exposure categories in the HIV-1B epidemic in RS. However, B-GPGR seemed to be related to heterosexual individuals in the SC08 group. Our results suggest that the established B"-GWGR epidemics in both cities have similar patterns, which is likely due to their geographical proximity and cultural relationship.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Soropositividade para HIV/virologia , HIV-1/isolamento & purificação , Motivos de Aminoácidos , Sequência de Aminoácidos , Brasil/epidemiologia , Usuários de Drogas/estatística & dados numéricos , Feminino , HIV-1/classificação , HIV-1/genética , Heterossexualidade , Homossexualidade Masculina , Humanos , Masculino , Epidemiologia Molecular , Filogenia , Prevalência , Alinhamento de Sequência/estatística & dados numéricos , Parceiros Sexuais , Reação Transfusional
19.
Nat Commun ; 14(1): 2048, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041143

RESUMO

The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil's most heavily affected regions. We sequenced the virus genome from 4128 patients collected in Amazonas between July 1st, 2021, and January 31st, 2022, and investigated the viral dynamics using a phylodynamic approach. The VOCs Delta and Omicron BA.1 displayed similar patterns of phylogeographic spread but different epidemic dynamics. The replacement of Gamma by Delta was gradual and occurred without an upsurge of COVID-19 cases, while the rise of Omicron BA.1 was extremely fast and fueled a sharp increase in cases. Thus, the dissemination dynamics and population-level impact of new SARS-CoV-2 variants introduced in the Amazonian population after mid-2021, a setting with high levels of acquired immunity, greatly vary according to their viral phenotype.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Brasil , Imunidade Adaptativa
20.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243159

RESUMO

Dengue fever is among the most significant public health concerns in Brazil. To date, the highest number of Dengue notifications in the Americas has been reported in Brazil, with cases accounting for a total number of 3,418,796 reported cases as of mid-December 2022. Furthermore, the northeastern region of Brazil registered the second-highest incidence of Dengue fever in 2022. Due to the alarming epidemiological scenario, in this study, we used a combination of portable whole-genome sequencing, phylodynamic, and epidemiological analyses to reveal a novel DENV-1 genotype V clade and the persistence of DENV-2 genotype III in the region. We further report the presence of non-synonymous mutations associated with non-structural domains, especially the NS2A (non-structural protein 2A), as well as describe synonymous mutations in envelope and membrane proteins, distributed differently between clades. However, the absence of clinical data at the time of collection and notification, as well as the impossibility of monitoring patients in order to observe worsening or death, restricts our possibility of correlating mutational findings with possible clinical prognoses. Together, these results reinforce the crucial role of genomic surveillance to follow the evolution of circulating DENV strains and understand their spread across the region through inter-regional importation events, likely mediated by human mobility, and also the possible impacts on public health and outbreak management.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Filogenia , Dengue/epidemiologia , Brasil/epidemiologia , Variação Genética , RNA Viral/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA