Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(16): 162501, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792367

RESUMO

In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from ^{67}Kr. At the same time, no evidence for 2p emission of ^{59}Ge and ^{63}Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to ^{67}Kr as being the best new candidate among the three for two-proton radioactivity. ^{67}Kr is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of ^{67}Kr is 7.4(30) ms.

2.
Phys Rev Lett ; 112(22): 222501, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949762

RESUMO

We report the observation of a very exotic decay mode at the proton drip line, the ß-delayed γ-proton decay, clearly seen in the ß decay of the T_{z}=-2 nucleus ^{56}Zn. Three γ-proton sequences have been observed after the ß decay. Here this decay mode, already observed in the sd shell, is seen for the first time in the fp shell. Both γ and proton decays have been taken into account in the estimation of the Fermi and Gamow-Teller strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.

3.
Phys Rev Lett ; 112(4): 042502, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580444

RESUMO

Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

4.
Phys Rev Lett ; 110(8): 082502, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473138

RESUMO

A long-lived J(π) = 4(1)(+) isomer, T(1/2) = 2.2(1) ms, has been discovered at 643.4(1) keV in the weakly bound (9)(26)F nucleus. It was populated at Grand Accélérateur National d'Ions Lourds in the fragmentation of a (36)S beam. It decays by an internal transition to the J(π) = 1(1)(+) ground state [82(14)%], by ß decay to (26)Ne, or ß-delayed neutron emission to (25)Ne. From the ß-decay studies of the J(π) =1(1)(+) and J(π) = 4(1)(+) states, new excited states have been discovered in (25,26)Ne. Gathering the measured binding energies of the J(π) = 1(1)(+) -4(1)(+) multiplet in (9)(26)F, we find that the proton-neutron π0d(5/2)ν0d(3/2) effective force used in shell-model calculations should be reduced to properly account for the weak binding of (9)(26)F. Microscopic coupled cluster theory calculations using interactions derived from chiral effective field theory are in very good agreement with the energy of the low-lying 1(1)(+), 2(1)(+), 4(1)(+) states in (26)F. Including three-body forces and coupling to the continuum effects improve the agreement between experiment and theory as compared to the use of two-body forces only.

5.
Phys Rev Lett ; 109(20): 202503, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215476

RESUMO

We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei (19)B, (22)C, and (29)F as well as that of (34)Na. In addition, the most precise determinations to date for (23)N and (31)Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in (22)C, with a dominant ν2s(1/2)(2) configuration, and a single-neutron halo in (31)Ne with the valence neutron occupying predominantly the 2p(3/2) orbital. Despite a very low two-neutron separation energy the development of a halo in (19)B is hindered by the 1d(5/2)(2) character of the valence neutrons.

6.
Phys Rev Lett ; 109(9): 092503, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002828

RESUMO

The 02(+) state in 34Si has been populated at the GANIL-LISE3 facility through the ß decay of a newly discovered 1(+) isomer in 34Al of 26(1) ms half-life. The simultaneous detection of e(+)e(-) pairs allowed the determination of the excitation energy E(02(+))=2719(3) keV and the half-life T(1/2)=19.4(7) ns, from which an electric monopole strength of ρ(2)(E0)=13.0(0.9)×10(-3) was deduced. The 2(1)(+) state is observed to decay both to the 0(1)(+) ground state and to the newly observed 0(2)(+) state [via a 607(2) keV transition] with a ratio R(2(1)(+)→0(1)(+)/2(1)(+)→0(2)(+))=1380(717). Gathering all information, a weak mixing with the 0(1)(+) and a large deformation parameter of ß=0.29(4) are found for the 0(2)(+) state, in good agreement with shell model calculations using a new SDPF-U-MIX interaction allowing np-nh excitations across the N=20 shell gap.

7.
Phys Rev Lett ; 109(18): 182501, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215274

RESUMO

Excited states in (38,40,42) Si nuclei have been studied via in-beam γ-ray spectroscopy with multinucleon removal reactions. Intense radioactive beams of ^{40}S and (44)S provided at the new facility of the RIKEN Radioactive Isotope Beam Factory enabled γ-γ coincidence measurements. A prominent γ line observed with an energy of 742(8) keV in (42) Si confirms the 2(+) state reported in an earlier study. Among the γ lines observed in coincidence with the 2^{+} → 0+ transition, the most probable candidate for the transition from the yrast 4(+) state was identified, leading to a 4(1)+) energy of 2173(14) keV. The energy ratio of 2.93(5) between the 2(1)+ and 4(1)(+) states indicates well-developed deformation in (42) Si at N = 28 and Z = 14. Also for 38,40)Si energy ratios with values of 2.09(5) and 2.56(5) were obtained. Together with the ratio for (42)Si, the results show a rapid deformation development of Si isotopes from N = 24 to N = 28.

8.
Phys Rev Lett ; 107(10): 102502, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21981498

RESUMO

The two protons emitted in the decay of 54Zn have been individually observed for the first time in a time projection chamber. The total decay energy and the half-life measured in this work agree with the results obtained in a previous experiment. Angular and energy correlations between the two protons are determined and compared to theoretical distributions of a three-body model. Within the shell model framework, the relative decay probabilities show a strong contribution of the p2 configuration for the two-proton emission. After 45Fe, the present result on 54Zn constitutes only the second case of a direct observation of the ground state two-proton decay of a long-lived isotope.

9.
Nat Commun ; 12(1): 4805, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376669

RESUMO

Proton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54mNi, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, ℓ = 5 and ℓ = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions.

10.
Phys Rev Lett ; 105(10): 102501, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867514

RESUMO

The structure of 44S has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 2(1)+ and 0(1)+ states, measured for the first time, lead to a reduced transition probability B(E2: 2(1)+→0(2)+)=8.4(26) e(2) fm4 and a monopole strength ρ2(E0: 0(2)+→0(1)+)=8.7(7)×10(-3). Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.

12.
Phys Rev Lett ; 102(9): 092501, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392514

RESUMO

We report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)]. The 7/2- spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

13.
Phys Rev Lett ; 99(10): 102501, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17930383

RESUMO

The decay of the ground-state two-proton emitter 45Fe was studied with a time-projection chamber and the emission of two protons was unambiguously identified. The total decay energy and the half-life measured in this work agree with the results from previous experiments. The present result constitutes the first direct observation of the individual protons in the two-proton decay of a long-lived ground-state emitter. In parallel, we identified for the first time directly two-proton emission from 43Cr, a known beta-delayed two-proton emitter. The technique developed in the present work opens the way to a detailed study of the mechanism of ground state as well as beta-delayed two-proton radioactivity.

14.
Phys Rev Lett ; 99(2): 022503, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678217

RESUMO

The energies of the excited states in very neutron-rich (42)Si and (41,43)P have been measured using in-beam gamma-ray spectroscopy from the fragmentation of secondary beams of (42,44)S at 39A MeV. The low 2(+) energy of (42)Si, 770(19) keV, together with the level schemes of (41,43)P, provides evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that (42)Si is best described as a well-deformed oblate rotor.

15.
Phys Rev Lett ; 97(9): 092501, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026356

RESUMO

The N = 28 shell closure has been investigated via the 46Ar(d,p)47Ar transfer reaction in inverse kinematics. Energies and spectroscopic factors of the neutron p(3/2), p(1/2), and f(5/2) states in 47Ar were determined and compared to those of the 49Ca isotone. We deduced a reduction of the N = 28 gap by 330(90) keV and spin-orbit weakenings of approximately 10(2) and 45(10)% for the f and p states, respectively. Such large variations for the f and p spin-orbit splittings could be accounted for by the proton-neutron tensor force and by the density dependence of the spin-orbit interaction, respectively. This contrasts with the picture of the spin-orbit interaction as a surface term only.

16.
Phys Rev Lett ; 96(23): 232501, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16803374

RESUMO

The reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core. In the Zn isotopic chain, the steep rise of B(E2) values beyond N=40 continues up to (74)Zn(44). The enhanced proton core polarization in (70)Ni is attributed to the monopole interaction between the neutron in the g(9/2) and protons in the f(7/2) and f(5/2) spin-orbit partner orbitals. This interaction could result in a weakening of magicity in (78)Ni(50).

17.
Phys Rev Lett ; 94(23): 232501, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-16090464

RESUMO

The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasifragmentation of a 58Ni beam at 74.5 MeV/nucleon in a (nat)Ni target. The fragments were analyzed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2(+1.8)(-0.8) ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models.

18.
Phys Rev Lett ; 87(4): 042501, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461610

RESUMO

Radiative capture of protons is investigated as a probe of clustering in nuclei far from stability. The first such measurement on a halo nucleus is reported here for the reaction 6He(p,gamma) at 40 MeV. Capture into 7Li is observed as the strongest channel. In addition, events have been recorded that may be described by quasifree capture on a halo neutron, the alpha core, and 5He. The possibility of describing such events by capture into the continuum of 7Li is also discussed.

19.
Phys Rev Lett ; 88(9): 092501, 2002 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-11863997

RESUMO

The neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy. The B(E2) value for (68)Ni(40) is unexpectedly small. An analysis in terms of large scale shell model calculations stresses the importance of proton core excitations to reproduce the B(E2) values and indicates the erosion of the N = 40 harmonic-oscillator subshell by neutron-pair scattering.

20.
Phys Rev Lett ; 86(4): 600-3, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11177891

RESUMO

The two-neutron halo nucleus (14)Be has been investigated in a kinematically complete measurement of the fragments ((12)Be and neutrons) produced in dissociation at 35 MeV/nucleon on C and Pb targets. Two-neutron removal cross sections, neutron angular distributions, and invariant mass spectra were measured, and the contributions from electromagnetic dissociation (EMD) were deduced. Comparison with three-body model calculations suggests that the halo wave function contains a large nu(2s(1/2))(2) admixture. The EMD invariant mass spectrum exhibited enhanced strength near threshold consistent with a nonresonant soft-dipole excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA