RESUMO
The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.
Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Cromatina/metabolismo , Desoxirribonucleases/metabolismo , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição/metabolismoRESUMO
A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.
Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Regulon , Animais , Linhagem da Célula , Células Cultivadas , Ilhas de CpG , Metilação de DNA , Técnicas Genéticas , Camundongos , Especificidade de Órgãos , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.
Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Camundongos , Humanos , Animais , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/patologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Fator 2 de Diferenciação de Crescimento/metabolismoRESUMO
BACKGROUND AND AIMS: Reliable noninvasive biomarkers are an unmet clinical need for the diagnosis of NASH. This study investigates the diagnostic accuracy of the circulating triggering receptor expressed on myeloid cells 2 (plasma TREM2) as a biomarker for NASH in patients with NAFLD and elevated liver stiffness. APPROACH AND RESULTS: We collected cross-sectional, clinical data including liver biopsies from a derivation ( n = 48) and a validation cohort ( n = 170) of patients with elevated liver stiffness measurement (LSM ≥ 8.0 kPa). Patients with NAFLD activity scores (NAS) ≥4 were defined as having NASH. Plasma TREM2 levels were significantly elevated in patients with NASH of the derivation cohort, with an area under the receiver operating characteristics curve (AUROC) of 0.92 (95% confidence interval [CI], 0.84-0.99). In the validation cohort, plasma TREM2 level increased approximately two-fold in patients with NASH, and a strong diagnostic accuracy was confirmed (AUROC, 0.83; 95% CI, 0.77-0.89; p < 0.0001). Plasma TREM2 levels were associated with the individual histologic features of NAS: steatosis, lobular inflammation, and ballooning ( p < 0.0001), but only weakly with fibrosis stages. Dual cutoffs for rule-in and rule-out were explored: a plasma TREM2 level of ≤38 ng/ml was found to be an optimal NASH rule-out cutoff (sensitivity 90%; specificity 52%), whereas a plasma TREM2 level of ≥65 ng/ml was an optimal NASH rule-in cutoff (specificity 89%; sensitivity 54%). CONCLUSIONS: Plasma TREM2 is a plausible individual biomarker that can rule-in or rule-out the presence of NASH with high accuracy and thus has the potential to reduce the need for liver biopsies and to identify patients who are eligible for clinical trials in NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Cirrose Hepática/patologia , Estudos Transversais , Biomarcadores , Biópsia , Glicoproteínas de Membrana , Receptores ImunológicosRESUMO
Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model.
Assuntos
Elementos Facilitadores Genéticos/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Receptores dos Hormônios Tireóideos/genética , Hormônios Tireóideos/farmacologia , Acetilação , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Fígado/química , Masculino , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismoRESUMO
Tumor-associated macrophages (TAMs) support tumor growth by suppressing the activity of tumor-infiltrating T cells. Consistently, TAMs are considered a major limitation for the efficacy of cancer immunotherapy. However, the molecular reason behind the acquisition of an immunosuppressive TAM phenotype is not fully clarified. During tumor growth, the extracellular matrix (ECM) is degraded and substituted with a tumor-specific collagen-rich ECM. The collagen density of this tumor ECM has been associated with poor patient prognosis but the reason for this is not well understood. In this study, we investigated whether the collagen density could modulate the immunosuppressive activity of TAMs. The murine macrophage cell line RAW 264.7 was three-dimensionally cultured in collagen matrices of low and high collagen densities mimicking healthy and tumor tissue, respectively. Collagen density did not affect proliferation or viability of the macrophages. However, whole-transcriptome analysis revealed a striking response to the surrounding collagen density, including the regulation of immune regulatory genes and genes encoding chemokines. These transcriptional changes were shown to be similar in murine bone marrow-derived macrophages and TAMs isolated from murine tumors. Strikingly, coculture assays with primary T cells showed that macrophages cultured in high-density collagen were less efficient at attracting cytotoxic T cells and capable of inhibiting T cell proliferation more than macrophages cultured in low-density collagen. Our study demonstrates that a high collagen density can instruct macrophages to acquire an immunosuppressive phenotype. This mechanism could reduce the efficacy of immunotherapy and explain the link between high collagen density and poor prognosis.
Assuntos
Colágeno/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/imunologia , Quimiocinas/imunologia , Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transcrição Gênica/imunologia , Microambiente Tumoral/imunologiaRESUMO
Hepatic circadian gene transcription is tightly coupled to feeding behavior, which has a profound impact on metabolic disorders associated with diet-induced obesity. Here, we describe a genomics approach to uncover mechanisms controlling hepatic postprandial gene expression. Combined transcriptomic and cistromic analysis identified hundreds of circadian-regulated genes and enhancers controlled by feeding. Postprandial suppression of enhancer activity was associated with reduced glucocorticoid receptor (GR) and Forkhead box O1 (FOXO1) occupancy of chromatin correlating with reduced serum corticosterone levels and increased serum insulin levels. Despite substantial co-occupancy of feeding-regulated enhancers by GR and FOXO1, selective disruption of corticosteroid and/or insulin signaling resulted in dysregulation of specific postprandial regulated gene programs. In combination, these signaling pathways operate a major part of the genes suppressed by feeding. Importantly, the feeding response was disrupted in diet-induced obese animals, which was associated with dysregulation of several corticosteroid- and insulin-regulated genes, providing mechanistic insights to dysregulated circadian gene transcription associated with obesity.
Assuntos
Insulina/metabolismo , Período Pós-Prandial/genética , Receptores de Glucocorticoides/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Insulina/genética , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA synthesis (i.e., eRNA). In particular, multiple regions were transcribed to eRNA within the regulatory region of MYOD1, including previously characterized distal regulatory regions (DRR) and core enhancer (CE). While (CE)RNA enhanced RNA polymerase II (Pol II) occupancy and transcription at MYOD1, (DRR)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events.
Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Proteína MyoD/genética , Miogenina/genética , Regiões Promotoras Genéticas , RNA/biossíntese , RNA/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismoRESUMO
Thyroid hormone (TH) and TH receptors (TRs) α and ß act by binding to TH response elements (TREs) in regulatory regions of target genes. This nuclear signaling is established as the canonical or type 1 pathway for TH action. Nevertheless, TRs also rapidly activate intracellular second-messenger signaling pathways independently of gene expression (noncanonical or type 3 TR signaling). To test the physiological relevance of noncanonical TR signaling, we generated knockin mice with a mutation in the TR DNA-binding domain that abrogates binding to DNA and leads to complete loss of canonical TH action. We show that several important physiological TH effects are preserved despite the disruption of DNA binding of TRα and TRß, most notably heart rate, body temperature, blood glucose, and triglyceride concentration, all of which were regulated by noncanonical TR signaling. Additionally, we confirm that TRE-binding-defective TRß leads to disruption of the hypothalamic-pituitary-thyroid axis with resistance to TH, while mutation of TRα causes a severe delay in skeletal development, thus demonstrating tissue- and TR isoform-specific canonical signaling. These findings provide in vivo evidence that noncanonical TR signaling exerts physiologically important cardiometabolic effects that are distinct from canonical actions. These data challenge the current paradigm that in vivo physiological TH action is mediated exclusively via regulation of gene transcription at the nuclear level.
Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Miocárdio/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Animais , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Receptores dos Hormônios Tireóideos/genética , Hormônios Tireóideos/genéticaRESUMO
Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR-binding sites are occupied by C/EBPß. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPß for GR recruitment. Disruption of C/EBPß binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin remodelling specifically at sites co-occupied by GR and C/EBPß. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPß regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell-specific priming proteins and chromatin remodellers.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Dexametasona/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Nucleossomos , Motivos de Nucleotídeos , Especificidade de Órgãos , Ligação Proteica , Receptores de Glucocorticoides/genética , Elementos Reguladores de Transcrição , Elementos de Resposta/genéticaRESUMO
Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.
Assuntos
Receptores de Glucocorticoides/química , Animais , Células Cultivadas , DNA/metabolismo , Camundongos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismoRESUMO
The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a complex is dictated by its structure. In addition, it may help us estimate the effects of mutations on GR interactions and signaling.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Modelos Moleculares , Receptores de Glucocorticoides/metabolismo , Algoritmos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Computadores Analógicos , Dimerização , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Ratos , Receptores de Glucocorticoides/química , TransfecçãoRESUMO
The accessibility of different chromatin regions to transcription factors and other DNA-binding proteins is a critical determinant of cell function. Here, we detail a modified assay for transposase-accessible chromatin sequencing (ATAC-seq) protocol which measures chromatin accessibility genome wide. We describe nuclei isolation, tagmentation, PCR amplification, and pre- and post-sequencing quality control. Our protocol is optimized for the liver, a tissue where nuclei isolation requires distinct steps. We provide two detailed vignettes: one for bulk ATAC-seq and another for single-nuclei ATAC-seq.
Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Camundongos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Núcleo Celular/genética , Sequenciamento de Cromatina por ImunoprecipitaçãoRESUMO
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, ß-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Assuntos
Metabolismo dos Lipídeos , Receptores de Glucocorticoides , Masculino , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Receptores de Glucocorticoides/genética , Hepatócitos , Fígado , AdipogeniaRESUMO
Murine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models. Additionally, other parameters that are important for cancer progression, such as collagen content and mechanical tissue stiffness across syngeneic tumor models have not previously been reported. Here, we compare the TME of tumors derived from six common syngeneic tumor models. Using flow cytometry and transcriptomic analyses, we show that strikingly unique TMEs are formed by the different cancer cell lines. The differences are reflected as changes in abundance and phenotype of myeloid, lymphoid, and stromal cells in the tumors. Gene expression analyses support the different cellular composition of the TMEs and indicate that distinct immunosuppressive mechanisms are employed depending on the tumor model. Cancer-associated fibroblasts (CAFs) also acquire very different phenotypes across the tumor models. These differences include differential expression of genes encoding extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and immunosuppressive factors. The gene expression profiles suggest that CAFs can contribute to the formation of an immunosuppressive TME, and flow cytometry analyses show increased PD-L1 expression by CAFs in the immunogenic tumor models, MC38 and CT26. Comparison with CAF subsets identified in other studies shows that CAFs are skewed towards specific subsets depending on the model. In athymic mice lacking tumor-infiltrating cytotoxic T cells, CAFs express lower levels of PD-L1 and lower levels of fibroblast activation markers. Our data underscores that CAFs can be involved in the formation of an immunosuppressive TME.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Proteínas da Matriz Extracelular , Imunossupressores , Camundongos Nus , Fenótipo , Neoplasias/genéticaRESUMO
Background & Aims: Histological assessment of liver biopsies is the gold standard for diagnosis of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), despite its well-established limitations. Therefore, non-invasive biomarkers that can offer an integrated view of the liver are needed to improve diagnosis and reduce sampling bias. Hepatic stellate cells (HSCs) are central in the development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods: We performed RNA-sequencing on liver biopsies from a histologically characterised cohort of obese patients (n = 30, BMI >35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings using single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results: Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared to no-NAFLD (p.adj <0.001). Single-cell RNA-sequencing data indicated that SMOC2 was primarily expressed by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p <0.001), with a predictive accuracy of AUROC 0.88. Conclusions: Increased SMOC2 in plasma appears to reflect HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH. Impact and implications: Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the most common forms of chronic liver diseases. Currently, liver biopsies are the gold standard for diagnosing NAFLD. Blood-based biomarkers to complement liver biopsies for diagnosis of NAFLD are required. We found that activated hepatic stellate cells, a cell type central to NAFLD pathogenesis, upregulate expression of the secreted protein SPARC-related modular calcium-binding protein 2 (SMOC2). SMOC2 was elevated in blood samples from patients with NASH and may hold promise as a blood-based biomarker for the diagnosis of NAFLD.
RESUMO
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly, and unmet treatment can result in the development of hepatitis, fibrosis, and liver failure. There are difficulties involved in diagnosing NAFLD early and for this reason there are challenges involved in its treatment. Furthermore, no drugs are currently approved to alleviate complications, a fact which highlights the need for further insight into disease mechanisms. NAFLD pathogenesis is associated with complex cellular changes, including hepatocyte steatosis, immune cell infiltration, endothelial dysfunction, hepatic stellate cell activation, and epithelial ductular reaction. Many of these cellular changes are controlled by dramatic changes in gene expression orchestrated by the cis-regulatory genome and associated transcription factors. Thus, to understand disease mechanisms, we need extensive insights into the gene regulatory mechanisms associated with tissue remodeling. Mapping cis-regulatory regions genome-wide is a step towards this objective and several current and emerging technologies allow detection of accessible chromatin and specific histone modifications in enriched cell populations of the liver, as well as in single cells. Here, we discuss recent insights into the cis-regulatory genome in NAFLD both at the organ-level and in specific cell populations of the liver. Moreover, we highlight emerging technologies that enable single-cell resolved analysis of the cis-regulatory genome of the liver.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.
Assuntos
Receptor Constitutivo de Androstano/agonistas , Receptor Constitutivo de Androstano/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Piridinas/administração & dosagem , Animais , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.
Assuntos
Antagonistas Adrenérgicos beta , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Propranolol/farmacologiaRESUMO
BACKGROUND: High expression of the metabolic enzyme arginase-2 (ARG2) by cancer cells, regulatory immune cells, or cells of the tumor stroma can reduce the availability of arginine (L-Arg) in the tumor microenvironment (TME). Depletion of L-Arg has detrimental consequences for T cells and leads to T-cell dysfunction and suppression of anticancer immune responses. Previous work from our group has demonstrated the presence of proinflammatory ARG2-specific CD4 T cells that inhibited tumor growth in murine models on activation with ARG2-derived peptides. In this study, we investigated the natural occurrence of ARG2-specific CD8 T cells in both healthy donors (HDs) and patients with cancer, along with their immunomodulatory capabilities in the context of the TME. MATERIALS AND METHODS: A library of 15 major histocompatibility complex (MHC) class I-restricted ARG2-derived peptides were screened in HD peripheral blood mononuclear cells using interferon gamma (IFN-γ) ELISPOT. ARG2-specific CD8 T-cell responses were identified using intracellular cytokine staining and ARG2-specific CD8 T-cell cultures were established by enrichment and rapid expansion following in vitro peptide stimulation. The reactivity of the cultures toward ARG2-expressing cells, including cancer cell lines and activated regulatory T cells (Tregs), was assessed using IFN-γ ELISPOT and a chromium release assay. The Treg signature was validated based on proliferation suppression assays, flow cytometry and quantitative reverse transcription PCR (RT-qPCR). In addition, vaccinations with ARG2-derived epitopes were performed in the murine Pan02 tumor model, and induction of ARG2-specific T-cell responses was evaluated with IFN-γ ELISPOT. RNAseq and subsequent GO-term and ImmuCC analysis was performed on the tumor tissue. RESULTS: We describe the existence of ARG2-specific CD8+ T cells and demonstrate these CD8+ T-cell responses in both HDs and patients with cancer. ARG2-specific T cells recognize and react to an ARG2-derived peptide presented in the context of HLA-B8 and exert their cytotoxic function against cancer cells with endogenous ARG2 expression. We demonstrate that ARG2-specific T cells can specifically recognize and react to activated Tregs with high ARG2 expression. Finally, we observe tumor growth suppression and antitumorigenic immunomodulation following ARG2 vaccination in an in vivo setting. CONCLUSION: These findings highlight the ability of ARG2-specific T cells to modulate the immunosuppressive TME and suggest that ARG2-based immunomodulatory vaccines may be an interesting option for cancer immunotherapy.