Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurophysiol ; 129(2): 347-355, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542422

RESUMO

The parabrachial nucleus (PB) in the upper brainstem receives interoceptive information and sends a massive output projection directly to the cerebral cortex. Its glutamatergic axons primarily target the midinsular cortex, and we have proposed that this PB-insular projection promotes arousal. Here, we test whether stimulating this projection causes wakefulness. We combined optogenetics and video-electroencephalography (vEEG) in mice to test this hypothesis by stimulating PB axons in the insular cortex. Stimulating this projection did not alter the cortical EEG or awaken mice. Also, despite a tendency toward aversion, PB-insular stimulation did not significantly alter real-time place preference (RTPP). These results are not consistent with the hypothesis that the direct PB-insular projection is part of the ascending arousal system.NEW & NOTEWORTHY A brainstem region critical for wakefulness overlaps the medial parabrachial nucleus (PB) and has functional and direct axonal connectivity with the insular cortex. In this study, we hypothesized that this direct projection from the PB to the insular cortex promotes arousal. However, photostimulating PB axons in the insular cortex did not alter the cortical EEG or awaken mice. This information constrains the possible circuit connections through which brainstem neurons may sustain arousal.


Assuntos
Tronco Encefálico , Córtex Cerebral , Camundongos , Animais , Tronco Encefálico/fisiologia , Eletroencefalografia , Nível de Alerta , Vigília
2.
Cereb Cortex ; 30(9): 4811-4833, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32383444

RESUMO

The parabrachial nucleus (PB) in the upper brain stem tegmentum includes several neuronal subpopulations with a wide variety of connections and functions. A subpopulation of PB neurons projects axons directly to the cerebral cortex, and limbic areas of the cerebral cortex send a return projection directly to the PB. We used retrograde and Cre-dependent anterograde tracing to identify genetic markers and characterize this PB-cortical interconnectivity in mice. Cortical projections originate from glutamatergic PB neurons that contain Lmx1b (81%), estrogen receptor alpha (26%), and Satb2 (20%), plus mRNA for the neuropeptides cholecystokinin (Cck, 48%) and calcitonin gene-related peptide (Calca, 13%), with minimal contribution from FoxP2+ PB neurons (2%). Axons from the PB produce an extensive terminal field in an unmyelinated region of the insular cortex, extending caudally into the entorhinal cortex, and arcing rostrally through the dorsolateral prefrontal cortex, with a secondary terminal field in the medial prefrontal cortex. In return, layer 5 neurons in the insular cortex and other prefrontal areas, along with a dense cluster of cells dorsal to the claustrum, send a descending projection to subregions of the PB that contain cortically projecting neurons. This information forms the neuroanatomical basis for testing PB-cortical interconnectivity in arousal and interoception.


Assuntos
Córtex Cerebral/citologia , Vias Neurais/citologia , Núcleos Parabraquiais/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Genet Res (Camb) ; 101: e8, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31190668

RESUMO

Compound heterozygotes occur when different variants at the same locus on both maternal and paternal chromosomes produce a recessive trait. Here we present the tool VarCount for the quantification of variants at the individual level. We used VarCount to characterize compound heterozygous coding variants in patients with epileptic encephalopathy and in the 1000 Genomes Project participants. The Epi4k data contains variants identified by whole exome sequencing in patients with either Lennox-Gastaut Syndrome (LGS) or infantile spasms (IS), as well as their parents. We queried the Epi4k dataset (264 trios) and the phased 1000 Genomes Project data (2504 participants) for recessive variants. To assess enrichment, transcript counts were compared between the Epi4k and 1000 Genomes Project participants using minor allele frequency (MAF) cutoffs of 0.5 and 1.0%, and including all ancestries or only probands of European ancestry. In the Epi4k participants, we found enrichment for rare, compound heterozygous variants in six genes, including three involved in neuronal growth and development - PRTG (p = 0.00086, 1% MAF, combined ancestries), TNC (p = 0.022, 1% MAF, combined ancestries) and MACF1 (p = 0.0245, 0.5% MAF, EU ancestry). Due to the total number of transcripts considered in these analyses, the enrichment detected was not significant after correction for multiple testing and higher powered or prospective studies are necessary to validate the candidacy of these genes. However, PRTG, TNC and MACF1 are potential novel recessive epilepsy genes and our results highlight that compound heterozygous variants should be considered in sporadic epilepsy.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Análise de Sequência de DNA/métodos , Adulto , Alelos , Exoma , Feminino , Frequência do Gene/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Heterozigoto , Humanos , Lactente , Recém-Nascido , Síndrome de Lennox-Gastaut/genética , Síndrome de Lennox-Gastaut/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Mutação , Fenótipo , Estudos Prospectivos , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Tenascina/genética
4.
Front Neurosci ; 16: 930514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928009

RESUMO

Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse "reticular activating system," the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal.

5.
Brain Struct Funct ; 227(6): 1921-1932, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35648216

RESUMO

Neurons emit axons, which form synapses, the fundamental unit of the nervous system. Neuroscientists use genetic anterograde tracing methods to label the synaptic output of specific neuronal subpopulations, but the resulting data sets are too large for manual analysis, and current automated methods have significant limitations in cost and quality. In this paper, we describe a pipeline optimized to identify anterogradely labeled presynaptic boutons in brain tissue sections. Our histologic pipeline labels boutons with high sensitivity and low background. To automatically detect labeled boutons in slide-scanned tissue sections, we developed BoutonNet. This detector uses a two-step approach: an intensity-based method proposes possible boutons, which are checked by a neural network-based confirmation step. BoutonNet was compared to expert annotation on a separate validation data set and achieved a result within human inter-rater variance. This open-source technique will allow quantitative analysis of the fundamental unit of the brain on a whole-brain scale.


Assuntos
Terminações Pré-Sinápticas , Sinapses , Axônios , Encéfalo , Humanos , Neurônios , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia
6.
J Comp Neurol ; 530(10): 1658-1699, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134251

RESUMO

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.


Assuntos
Núcleo de Kölliker-Fuse , Núcleos Parabraquiais , Animais , Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Humanos , Hipotálamo/metabolismo , Ponte/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Comp Neurol ; 529(4): 657-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621762

RESUMO

The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.


Assuntos
Encefalinas/biossíntese , Fatores de Transcrição Forkhead/biossíntese , Núcleos Parabraquiais/metabolismo , Precursores de Proteínas/biossíntese , Proteínas Repressoras/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Tronco Encefálico/química , Tronco Encefálico/metabolismo , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Vias Eferentes/química , Vias Eferentes/metabolismo , Encefalinas/análise , Encefalinas/genética , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/genética , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleos Parabraquiais/química , Precursores de Proteínas/análise , Precursores de Proteínas/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Tálamo/química , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/genética
8.
J Comp Neurol ; 529(11): 2911-2957, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715169

RESUMO

The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Neurônios Eferentes/metabolismo , Núcleos Parabraquiais/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Vias Eferentes/química , Vias Eferentes/metabolismo , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Neurônios/metabolismo , Neurônios Eferentes/química , Núcleos Parabraquiais/química
9.
JCO Clin Cancer Inform ; 2: 1-14, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30652553

RESUMO

PURPOSE: Despite the intra- and intertumoral heterogeneity seen in glioblastoma multiforme (GBM), there is little definitive data on the underlying cause of the differences in patient survivals. Serial imaging assessment of tumor growth allows quantification of tumor growth kinetics (TGK) measured in terms of changes in the velocity of radial expansion seen on imaging. Because a systematic study of this entire TGK phenotype-growth before treatment and during each treatment to recurrence -has never been coordinately studied in GBMs, we sought to identify whether patients cluster into discrete groups on the basis of their TGK. PATIENTS AND METHODS: From our multi-institutional database, we identified 48 patients who underwent maximally safe resection followed by radiotherapy with imaging follow-up through the time of recurrence. The patients were then clustered into two groups through a k-means algorithm taking as input only the TGK before and during treatment. RESULTS: There was a significant survival difference between the clusters ( P = .003). Paradoxically, patients among the long-lived cluster had significantly larger tumors at diagnosis ( P = .027) and faster growth before treatment ( P = .003) but demonstrated a better response to adjuvant chemotherapy ( P = .048). A predictive model was built to identify which cluster patients would likely fall into on the basis of information that would be available to clinicians immediately after radiotherapy (accuracy, 90.3%). CONCLUSION: Dichotomizing the heterogeneity of GBMs into two populations-one faster growing yet more responsive with increased survival and one slower growing yet less responsive with shorter survival-suggests that many patients who receive standard-of-care treatments may get better benefit from select alternative treatments.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Encéfalo/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Adulto , Idoso , Quimioterapia Adjuvante , Análise por Conglomerados , Feminino , Humanos , Cinética , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Radioterapia Adjuvante , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
10.
Nat Commun ; 5: 4835, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25203624

RESUMO

The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays by 28%, and covers at least one haplotype in ≈ 67% of any AJ genome with long, identical-by-descent segments. Reconstruction of recent AJ history from such segments confirms a recent bottleneck of merely ≈ 350 individuals. Modelling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. We date the split between the two ancestral populations to ≈ 12-25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum.


Assuntos
Variação Genética , Genética Populacional , Judeus/genética , População Branca/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Genoma , Genômica , Voluntários Saudáveis , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA