RESUMO
We report a newborn who presented with multiple limb and facial anomalies, endocrine disorders, and progressively worsening low-GGT cholestasis. A liver biopsy revealed hepatocellular cholestasis with giant cell transformation. Immunohistochemical staining revealed complete absence of BSEP protein compared to control liver. A large 2q24-32.2 deletion leading to loss of 78 OMIM genes. Multiple structural anomalies, epilepsy and endocrine anomalies have been described with hemizygous loss of these genes. This deletion also resulted in complete heterozygous deletion of ABCB11, which encodes the bile salt export pump (BSEP). Genetic analysis did not reveal any pathogenic variants, deletions, or duplications in the other ABCB11 allele. A heterozygous variant in NR1H4, which causes the autosomal recessive progressive familial intrahepatic cholestasis type 5, was also detected. The possible explanations for the PFIC type 2 phenotype in heterozygous loss of ABCB11 include genetic modifiers or di-genic disease with a compound ABCB11 deletion and an NR1H4 missense variant; or undetected pathogenic variants in the other ABCB11 or NR1H4 alleles.
Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Epilepsia Resistente a Medicamentos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Humanos , Recém-Nascido , MutaçãoRESUMO
BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Autístico/genética , Predisposição Genética para Doença , Proteínas de Ligação a RNA/genética , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno Autístico/complicações , Transtorno Autístico/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/patologia , Mutação/genética , Fenótipo , Sequenciamento do ExomaRESUMO
Infantile-onset Pompe disease (IOPD) is a rare, severe disorder of lysosomal storage of glycogen that leads to progressive cardiac and skeletal myopathy. IOPD is a fatal disease in childhood unless treated with enzyme replacement therapy (ERT) from an early age. Sickle cell anemia (SCA) is a relatively common hemoglobinopathy caused by a specific variant in the hemoglobin beta-chain. Here we report a case of a male newborn of African ancestry diagnosed and treated for IOPD and SCA. Molecular testing confirmed two GAA variants, NM_000152.5: c.842G>C, p.(Arg281Pro) and NM_000152.5: c.2560C>T, p.(Arg854*) in trans, and homozygosity for the HBB variant causative of SCA, consistent with his diagnosis. An acute neonatal presentation of hypotonia and cardiomyopathy required ERT with alglucosidase alfa infusions preceded by immune tolerance induction (ITI), as well as chronic red blood cell transfusions and penicillin V potassium prophylaxis for treatment of IOPD and SCA. Clinical course was further complicated by multiple respiratory infections. We review the current guidelines and interventions taken to optimize his care and the pitfalls of those guidelines when treating patients with concomitant conditions. To the best of our knowledge, no other case reports of the concomitance of these two disorders was found. This report emphasizes the importance of newborn screening, early intervention, and treatment considerations for this complex patient presentation of IOPD and SCA.
RESUMO
Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in PTPN4 in six unrelated individuals with varying degrees of intellectual disability or developmental delay. The variants occurred de novo in all five subjects in whom segregation analysis was possible. Recurring features include postnatal growth deficiency or excess, seizures, and, less commonly, structural CNS, heart, or skeletal anomalies. PTPN4 is a widely expressed protein tyrosine phosphatase that regulates neuronal cell homeostasis by protecting neurons against apoptosis. We suggest that pathogenic variants in PTPN4 confer risk for growth and cognitive abnormalities in humans.