Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
2.
Nat Rev Genet ; 23(12): 728-740, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831531

RESUMO

Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Nucleossomos/genética , Ligação Proteica , DNA/genética
3.
Nature ; 596(7870): 133-137, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34234345

RESUMO

The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Regulação da Expressão Gênica , Genes Essenciais , Humanos , Camundongos , Imagem Individual de Molécula
4.
Nature ; 571(7764): E6, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31239520

RESUMO

In this Article, in Fig. 1a, the 5' and 3' labels were reversed in the DNA sequence, and Fig. 4 was missing panel labels a-e. These errors have been corrected online.

5.
Nature ; 571(7763): 79-84, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142837

RESUMO

Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Dímeros de Pirimidina/análise , Microscopia Crioeletrônica , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/efeitos da radiação , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Termodinâmica , Raios Ultravioleta/efeitos adversos
6.
Genome Res ; 29(4): 554-563, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709850

RESUMO

Most mammalian RNA polymerase II initiation events occur at CpG islands, which are rich in CpGs and devoid of DNA methylation. Despite their relevance for gene regulation, it is unknown to what extent the CpG dinucleotide itself actually contributes to promoter activity. To address this question, we determined the transcriptional activity of a large number of chromosomally integrated promoter constructs and monitored binding of transcription factors assumed to play a role in CpG island activity. This revealed that CpG density significantly improves motif-based prediction of transcription factor binding. Our experiments also show that high CpG density alone is insufficient for transcriptional activity, yet results in increased transcriptional output when combined with particular transcription factor motifs. However, this CpG contribution to promoter activity is independent of DNA methyltransferase activity. Together, this refines our understanding of mammalian promoter regulation as it shows that high CpG density within CpG islands directly contributes to an environment permissive for full transcriptional activity.


Assuntos
Ilhas de CpG , Metilação de DNA , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Camundongos , Ligação Proteica , Fatores de Transcrição/metabolismo
7.
Genomics ; 112(1): 151-162, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095996

RESUMO

Cancer cell lines often have large structural variants (SVs) that evolve over time. There are many reported differences in large scale SVs between HL-60 and HL-60/S4, two cell lines derived from the same acute myeloid leukemia sample. However, the stability and variability of inter- and intra-chromosomal structural variants between different sources of the same cell line is unknown. Here, we used Hi-C and RNA-seq to identify and compare large SVs in HL-60 and HL-60/S4 cell lines. Comparisons with previously published karyotypes identified novel SVs in both cell lines. Hi-C was used to characterize the known expansion centered on the MYC locus. The MYC expansion was integrated into known locations in HL-60/S4, and a novel location (chr4) in HL-60. The HL-60 cell line has more within-line structural variation than the HL-60/S4 derivative cell line. Collectively we demonstrate the usefulness of Hi-C and with RNA-seq data for the identification and characterization of SVs.


Assuntos
Cromossomos Humanos , Variação Genética , Cromatina , Fusão Gênica , Genoma Humano , Células HL-60 , Humanos , Cariótipo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq
8.
Nucleic Acids Res ; 42(20): 12585-99, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25342201

RESUMO

Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.


Assuntos
Ciclo Celular/genética , Núcleo Celular/genética , Cromossomos Fúngicos , Regulação Fúngica da Expressão Gênica , Schizosaccharomyces/genética , Genoma Fúngico , Espaço Intranuclear , Sequências Repetidas Terminais , Transcrição Gênica
9.
Nucleic Acids Res ; 41(12): 6058-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23632166

RESUMO

To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, 'histone-like' protein (i.e. Fis, IHF and H-NS) -binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci.


Assuntos
Cromossomos Bacterianos/química , Replicação do DNA , Escherichia coli/genética , Transcrição Gênica , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Origem de Replicação , Serina/análogos & derivados , Serina/farmacologia
10.
Biosci Biotechnol Biochem ; 77(2): 402-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23391930

RESUMO

It is often desirable to obtain gene libraries with the greatest possible number of variants. We tested two different methods for desalting the products of library ligation reactions (silica-based microcolumns and drop dialysis), and examined their effects on final library size. For both intramolecular and intermolecular ligation, desalting by drop dialysis yielded approximately 3-5 times more transformants than microcolumn purification.


Assuntos
Clonagem Molecular/métodos , DNA/isolamento & purificação , Biblioteca Gênica , Vetores Genéticos/isolamento & purificação , Microdiálise/métodos , Sais/química , Adsorção , Contagem de Colônia Microbiana , DNA/genética , Eletroporação , Escherichia coli/genética , Microdiálise/normas , Transformação Bacteriana
11.
Nat Struct Mol Biol ; 30(7): 948-957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386214

RESUMO

The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
12.
Science ; 368(6498): 1460-1465, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32327602

RESUMO

Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo-electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.


Assuntos
Regulação da Expressão Gênica , Nucleossomos/química , Fator 3 de Transcrição de Octâmero/química , Fatores de Transcrição SOXB1/química , Animais , Microscopia Crioeletrônica , DNA/química , Histonas/química , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo
13.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133702

RESUMO

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Metilação de DNA , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cromatina/química , Cromossomos/química , Cromossomos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/química , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Proteínas Recombinantes de Fusão/metabolismo
14.
Genom Data ; 4: 12-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26484169

RESUMO

The data described in this article pertains to Grand et al. (2014), "Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure" [1]. Temperature sensitive Schizosaccharomyces pombe cell division cycle (cdc) mutants, which are induced by a shift in temperature to 36 °C, were chosen for the analysis of genome structure in the G1 phase, G2 phase and mitotic anaphase of the cell cycle. Chromatin and total RNA were isolated from the same cell culture following synchronization. Two biological replicates were analyzed for each condition. The global, three-dimensional organization of the chromosomes was captured at high resolution using Genome Conformation Capture (GCC). GCC libraries and RNA samples were sequenced using an Illumina Hi-Seq 2000 platform (Beijing Genomics Institute (China)). DNA sequences were processed using the Topography suite v1.19 [2] to obtain chromosome contact frequency matrices. RNA sequences were processed using the Cufflinks pipeline [3] to measure gene transcript levels and how these varied between the conditions. All sequence data, processed GCC and transcriptome files are available under the Gene Expression Omnibus (GEO) accession number GSE52287 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52287).

15.
PLoS One ; 7(1): e30943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292080

RESUMO

Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover, the frequency of specific mitochondrial-nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA plays a role in this process.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Organelas/metabolismo , Organelas/fisiologia , RNA Mensageiro/genética , Transcrição Gênica , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Núcleo Celular/efeitos dos fármacos , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epistasia Genética/efeitos dos fármacos , Epistasia Genética/fisiologia , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Loci Gênicos/fisiologia , Glucose/farmacologia , Organelas/efeitos dos fármacos , Organelas/genética , RNA Fúngico/efeitos dos fármacos , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA