Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2315648121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669182

RESUMO

We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.

2.
Nature ; 575(7781): 175-179, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659340

RESUMO

Supramolecular soft crystals are periodic structures that are formed by the hierarchical assembly of complex constituents, and occur in a broad variety of 'soft-matter' systems1. Such soft crystals exhibit many of the basic features (such as three-dimensional lattices and space groups) and properties (such as band structure and wave propagation) of their 'hard-matter' atomic solid counterparts, owing to the generic symmetry-based principles that underlie both2,3. 'Mesoatomic' building blocks of soft-matter crystals consist of groups of molecules, whose sub-unit-cell configurations couple strongly to supra-unit-scale symmetry. As yet, high-fidelity experimental techniques for characterizing the detailed local structure of soft matter and, in particular, for quantifying the effects of multiscale reconfigurability are quite limited. Here, by applying slice-and-view microscopy to reconstruct the micrometre-scale domain morphology of a solution-cast block copolymer double gyroid over large specimen volumes, we unambiguously characterize its supra-unit and sub-unit cell morphology. Our multiscale analysis reveals a qualitative and underappreciated distinction between this double-gyroid soft crystal and hard crystals in terms of their structural relaxations in response to forces-namely a non-affine mode of sub-unit-cell symmetry breaking that is coherently maintained over large multicell dimensions. Subject to inevitable stresses during crystal growth, the relatively soft strut lengths and diameters of the double-gyroid network can easily accommodate deformation, while the angular geometry is stiff, maintaining local correlations even under strong symmetry-breaking distortions. These features contrast sharply with the rigid lengths and bendable angles of hard crystals.

3.
Proc Natl Acad Sci U S A ; 119(43): e2207902119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252043

RESUMO

Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks.


Assuntos
DNA , Nanoestruturas , Coloides/química , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
4.
Acc Chem Res ; 56(11): 1330-1339, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212612

RESUMO

Hair is a natural polymeric composite primarily composed of tight macrobundles of keratin proteins, which are highly responsive to external stimuli, similarly to the hydrogels and other natural fibrous gel systems like collagen and fibrin.Hair and its appearance play a significant role in human society. As a highly complex biocomposite system, it has been traditionally challenging to characterize and thus develop personal care products. Over the last few decades, a significant societal paradigm shift occurred among those with curly hair, accepting the natural morphological shape of their curls and styling their hair according to its innate, distinct, and unique material properties, which has given rise to the development of new hair classification systems, beyond the traditional and highly limited race-based distinction (Caucasian, Mongolian, and African). L'Oréal developed a hair typing taxonomy based on quantitative geometric parameters among the four key patterns─straight, wavy, curly, and kinky, but it fails to capture the complex diversity of curly and kinky hair. Acclaimed celebrity hair stylist Andre Walker developed a classification system that is the existing gold standard for classifying curly and kinky hair, but it relies upon qualitative classification measures, making the system vague and ambiguous of phenotypic differences. The goal of this research is to use quantitative methods to identify new geometric parameters more representative of curly and kinky hair curl patterns, therefore providing more information on the kinds of personal care products that will resonate best with them and thus maximize desired appearance and health, and to correlate these new parameters with its mechanical properties. This was accomplished by identifying new geometric and mechanical parameters from several types of human hair samples.Geometric properties were measured using scanning electron microscopy (SEM), photogrammetry, and optical microscopy. Mechanical properties were measured under tensile extension using a texture analyzer (TA) and a dynamic mechanical analyzer (DMA), which bears similarity to the common act of brushing or combing. Both instruments measure force as a function of applied displacement, thus allowing the relationship between stress and applied stretch ratio to be measured as a hair strand uncurls and stretches to the point of fracture. From the resulting data, correlations were made between fiber geometry and mechanical performance. This data will be used to draw more conclusions on the contribution that fiber morphology has on hair fiber mechanics and will promote cultural inclusion among researchers and consumers possessing curly and kinky hair.


Assuntos
Cabelo , Humanos , Cabelo/anatomia & histologia , Fenótipo , Microscopia Eletrônica de Varredura
5.
Phys Rev Lett ; 132(21): 218201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856277

RESUMO

Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these systems give rise to anomalously large, nonaffine collective deformations, which we argue to be a generic consequence of "mass equilibration" within deformed networks. We propose and study a minimal "liquid network" model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of residually stressed mechanical networks with constant-tension bonds. We show that nonaffinity is strongly dependent on the valency of the network as well as the degree of strain-softening or strain-stiffening tension in the bonds. Taking diblock copolymer melts as a model system, liquid network theory captures quantitative features of two bicontinuous phases based on comparison with self-consistent field theory predictions and direct experimental characterization of acubic distortions, which are likely to be pronounced in soft amphiphilic systems more generally.

6.
Soft Matter ; 19(5): 858-881, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636841

RESUMO

Geometric frustration offers a pathway to soft matter self-assembly with controllable finite sizes. While the understanding of frustration in soft matter assembly derives almost exclusively from continuum elastic descriptions, a current challenge is to understand the connection between microscopic physical properties of misfitting "building blocks" and emergent assembly behavior at the mesoscale. We present and analyze a particle-based description of what is arguably the best studied example for frustrated soft matter assembly, negative-curvature ribbon assembly, observed in both assemblies of chiral surfactants and shape-frustrated nanoparticles. Based on our particle model, known as saddle wedge monomers, we numerically test the connection between microscopic shape and interactions of the misfitting subunits and the emergent behavior at the supra-particle scale, specifically focussing on the propagation and relaxation of inter-particle strains, the emergent role of extrinsic shape on frustrated ribbons and the equilibrium regime of finite width selection. Beyond the intuitive role of shape misfit, we show that self-limitation is critically dependent on the finite range of cohesive interactions, with larger size finite assemblies requiring increasing short-range interparticle forces. Additionally, we demonstrate that non-linearities arising from discrete particle interactions alter self-limiting behavior due to both strain-softening in shape-flattened assembly and partial yielding of highly strained bonds, which in turn may give rise to states of hierarchical, multidomain assembly. Tracing the regimes of frustration-limited assembly to the specific microscopic features of misfitting particle shapes and interactions provides necessary guidance for translating the theory of size-programmable assembly into design of intentionally-frustrated colloidal particles.

7.
Proc Natl Acad Sci U S A ; 116(5): 1483-1488, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30591569

RESUMO

The complex morphologies exhibited by spatially confined thin objects have long challenged human efforts to understand and manipulate them, from the representation of patterns in draped fabric in Renaissance art to current-day efforts to engineer flexible sensors that conform to the human body. We introduce a theoretical principle, broadly generalizing Euler's elastica-a core concept of continuum mechanics that invokes the energetic preference of bending over straining a thin solid object and that has been widely applied to classical and modern studies of beams and rods. We define a class of geometrically incompatible confinement problems, whereby the topography imposed on a thin solid body is incompatible with its intrinsic ("target") metric and, as a consequence of Gauss' Theorema Egregium, induces strain. By focusing on a prototypical example of a sheet attached to a spherical substrate, numerical simulations and analytical study demonstrate that the mechanics is governed by a principle, which we call the "Gauss-Euler elastica" This emergent rule states that-despite the unavoidable strain in such an incompatible confinement-the ratio between the energies stored in straining and bending the solid may be arbitrarily small. The Gauss-Euler elastica underlies a theoretical framework that greatly simplifies the daunting task of solving the highly nonlinear equations that describe thin solids at mechanical equilibrium. This development thus opens possibilities for attacking a broad class of phenomena governed by the coupling of geometry and mechanics.

8.
Proc Natl Acad Sci U S A ; 116(32): 15792-15801, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320590

RESUMO

Membrane-mediated particle interactions depend both on the properties of the particles themselves and the membrane environment in which they are suspended. Experiments have shown that chiral rod-like inclusions dissolved in a colloidal membrane of opposite handedness assemble into colloidal rafts, which are finite-sized reconfigurable droplets consisting of a large but precisely defined number of rods. We systematically tune the chirality of the background membrane and find that, in the achiral limit, colloidal rafts acquire complex structural properties and interactions. In particular, rafts can switch between 2 chiral states of opposite handedness, which alters the nature of the membrane-mediated raft-raft interactions. Rafts with the same chirality have long-ranged repulsions, while those with opposite chirality acquire attractions with a well-defined minimum. Both attractive and repulsive interactions are qualitatively explained by a continuum model that accounts for the coupling between the membrane thickness and the local tilt of the constituent rods. These switchable interactions enable assembly of colloidal rafts into intricate higher-order architectures, including stable tetrameric clusters and "ionic crystallites" of counter-twisting domains organized on a binary square lattice. Furthermore, the properties of individual rafts, such as their sizes, are controlled by their complexation with other rafts. The emergence of these complex behaviors can be rationalized purely in terms of generic couplings between compositional and orientational order of fluids of rod-like elements. Thus, the uncovered principles might have relevance for conventional lipid bilayers, in which the assembly of higher-order structures is also mediated by complex membrane-mediated interactions.

9.
Proc Natl Acad Sci U S A ; 116(10): 4080-4089, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765528

RESUMO

We explore the generality of the influence of segment chirality on the self-assembled structure of achiral-chiral diblock copolymers. Poly(cyclohexylglycolide) (PCG)-based chiral block copolymers (BCPs*), poly(benzyl methacrylate)-b-poly(d-cyclohexylglycolide) (PBnMA-PDCG) and PBnMA-b-poly(l-cyclohexyl glycolide) (PBnMA-PLCG), were synthesized for purposes of systematic comparison with polylactide (PLA)-based BCPs*, previously shown to exhibit chirality transfer from monomeric unit to the multichain domain morphology. Opposite-handed PCG helical chains in the enantiomeric BCPs* were identified by the vibrational circular dichroism (VCD) studies revealing transfer from chiral monomers to chiral intrachain conformation. We report further VCD evidence of chiral interchain interactions, consistent with some amounts of handed skew configurations of PCG segments in a melt state packing. Finally, we show by electron tomography [3D transmission electron microscope tomography (3D TEM)] that chirality at the monomeric and intrachain level ultimately manifests in the symmetry of microphase-separated, multichain morphologies: a helical phase (H*) of hexagonally, ordered, helically shaped tubular domains whose handedness agrees with the respective monomeric chirality. Critically, unlike previous PLA-based BCP*s, the lack of a competing crystalline state of the chiral PCGs allowed determination that H* is an equilibrium phase of chiral PBnMA-PCG. We compared different measures of chirality at the monomer scale for PLA and PCG, and argued, on the basis of comparison with mean-field theory results for chiral diblock copolymer melts, that the enhanced thermodynamic stability of the mesochiral H* morphology may be attributed to the relatively stronger chiral intersegment forces, ultimately tracing from the effects of a bulkier chiral side group on its main chain.

10.
Phys Rev Lett ; 127(21): 218002, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860079

RESUMO

Bundles of filaments are subject to geometric frustration: certain deformations (e.g., bending while twisted) require longitudinal variations in spacing between filaments. While bundles are common-from protein fibers to yarns-the mechanical consequences of longitudinal frustration are unknown. We derive a geometrically nonlinear formalism for bundle mechanics, using a gaugelike symmetry under reptations along filament backbones. We relate force balance to orientational geometry and assess the elastic cost of frustration in twisted-toroidal bundles.


Assuntos
Elasticidade , Proteínas/química
11.
J Chem Phys ; 155(22): 224901, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911312

RESUMO

Theories of strongly stretched polymer brushes, particularly the parabolic brush theory, are valuable for providing analytically tractable predictions for the thermodynamic behavior of surface-grafted polymers in a wide range of settings. However, the parabolic brush limit fails to describe polymers grafted to convex curved substrates, such as the surfaces of spherical nanoparticles or the interfaces of strongly segregated block copolymers. It has previously been shown that strongly stretched curved brushes require a boundary layer devoid of free chain ends, requiring modifications of the theoretical analysis. While this "end-exclusion zone" has been successfully incorporated into the descriptions of brushes grafted onto the outer surfaces of cylinders and spheres, the behavior of brushes on surfaces of arbitrary curvature has not yet been studied. We present a formulation of the strong-stretching theory for molten brushes on the surfaces of arbitrary curvature and identify four distinct regimes of interest for which brushes are predicted to possess end-exclusion zones, notably including regimes of positive mean curvature but negative Gaussian curvature. Through numerical solutions of the strong-stretching brush equations, we report predicted scaling of the size of the end-exclusion zone, the chain end distribution, the chain polarization, and the free energy of stretching with mean and Gaussian surface curvatures. Through these results, we present a comprehensive picture of how the brush geometry influences the end-exclusion zones and exact strong-stretching free energies, which can be applied, for example, to model the full spectrum of brush geometries encountered in block copolymer melt assembly.

12.
Proc Natl Acad Sci U S A ; 115(41): 10233-10238, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249659

RESUMO

Single molecular species can self-assemble into Frank-Kasper (FK) phases, finite approximants of dodecagonal quasicrystals, defying intuitive notions that thermodynamic ground states are maximally symmetric. FK phases are speculated to emerge as the minimal-distortional packings of space-filling spherical domains, but a precise measure of this distortion and how it affects assembly thermodynamics remains ambiguous. We use two complementary approaches to demonstrate that the principles driving FK lattice formation in diblock copolymers emerge directly from the strong-stretching theory of spherical domains, in which a minimal interblock area competes with a minimal stretching of space-filling chains. The relative stability of FK lattices is studied first using a diblock foam model with unconstrained particle volumes and shapes, which correctly predicts not only the equilibrium σ lattice but also the unequal volumes of the equilibrium domains. We then provide a molecular interpretation for these results via self-consistent field theory, illuminating how molecular stiffness increases the sensitivity of the intradomain chain configurations and the asymmetry of local domain packing. These findings shed light on the role of volume exchange on the formation of distinct FK phases in copolymers and suggest a paradigm for formation of FK phases in soft matter systems in which unequal domain volumes are selected by the thermodynamic competition between distinct measures of shape asymmetry.

13.
Soft Matter ; 16(4): 1102-1116, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894228

RESUMO

A generalized theory of the self-limiting assembly of twisted bundles of filaments and columns is presented. Bundles and fibers form in a broad variety of supramolecular systems, from biological to synthetic materials. A widely-invoked mechanism to explain their finite diameter relies on chirality transfer from the molecular constituents to collective twist of the assembly, the effect of which frustrates the lateral assembly and can select equilibrium, finite diameters of bundles. In this article, the thermodynamics of twisted-bundle assembly is analyzed to understand if chirality transfer is necessary for self-limitation, or instead, if spontaneously-twisting, achiral bundles also exhibit self-limited assembly. A generalized description is invoked for the elastic costs imposed by twist for bundles of various states of intra-bundle order from nematic to crystalline, as well as a generic mechanism for generating twist, classified both by chirality but also the twist susceptibility of inter-filament alignment. The theory provides a comprehensive set of predictions for the equilibrium twist and size of bundles as a function of surface energy as well as chirality, twist susceptibility, and elasticity of bundles. Moreover, it shows that while spontaneous twist can lead to self-limitation, assembly of twisted achiral bundles can be distinguished qualitatively in terms of their range of equilibrium sizes and thermodynamic stability relative to bulk (untwisted) states.

14.
Phys Rev Lett ; 123(14): 145501, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702180

RESUMO

We study the ground states of crystals on spherical surfaces. These ground states consist of positive disclination defects in structures spanning from flat and weakly curved caps to closed shells. Comparing two continuum theories and one discrete-lattice simulation, we first investigate the transition between defect-free caps to single-disclination ground states and show it to be continuous and symmetry breaking. Further, we show that ground states adopt icosahedral subgroup symmetries across the full range of curvatures, even far from the closure of complete shells. While superficially similar to other models of 2D "jellium" (e.g., superconducting disks and 2D Wigner crystals), the interplay between the free edge of caps and the non-Euclidean geometry of its embedding leads to nontrivial ground state behavior that is without counterpart in planar jellium models.

15.
Phys Rev Lett ; 120(24): 248002, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956973

RESUMO

It is generally understood that geometric frustration prevents maximal hexagonal packings in uniform filament bundles upon twist. We demonstrate that a hexagonal packed elastic filament bundle can preserve its order over a wide range of twist due to a subtle counteraction of geometric expansion with elastic contraction. Using x-ray scanning and by locating each filament in the bundle, we show the remarkable persistence of order even as the twist is increased well above 360°, by measuring the spatial correlation function across the bundle cross section. We introduce a model which analyzes the combined effects of elasticity including filament stretching and radial and hoop compression necessary to explain this generic preservation of order observed with Hookean filaments.

16.
Soft Matter ; 14(18): 3612-3623, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683466

RESUMO

Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks. Here, we propose a simple, efficient and flexible method to extract a 1D skeleton from 3D volume composition data of self-assembled networks. We apply this method to both self-consistent field theory predictions as well as experimental electron microtomography reconstructions of the double-gyroid phase of an ABA triblock copolymer. We further demonstrate how the analysis of 1D skeleton, 2D inter-domain surfaces, and combinations therefore, provide physical and structural insight into TPNs, across multiple length scales. Specifically, we propose and compare simple measures of network chirality as well as domain thickness, and analyze their spatial and statistical distributions in both ideal (theoretical) and non-ideal (experimental) double gyroid assemblies.

17.
J Chem Phys ; 148(17): 174905, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29739210

RESUMO

We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

18.
Nat Mater ; 15(7): 727-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26998916

RESUMO

In assemblies, the geometric frustration of a locally preferred packing motif leads to anomalous behaviours, from self-limiting growth to defects in the ground state. Here, we demonstrate that geometric frustration selects the equilibrium morphology of cohesive bundles of chiral filaments, an assembly motif critical to a broad range of biological and synthetic nanomaterials. Frustration of inter-filament spacing leads to optimal shapes of self-twisting bundles that break the symmetries of packing and of the underlying inter-filament forces, paralleling a morphological instability in spherical two-dimensional crystals. Equilibrium bundle morphology is controlled by a parameter that characterizes the relative costs of filament bending and the straining of cohesive bonds between filaments. This parameter delineates the boundaries between stable, isotropic cylindrical bundles and anisotropic, twisted-tape bundles. We also show how the mechanical and interaction properties of constituent amyloid fibrils may be extracted from the mesoscale dimensions of the anisotropic bundles that they form.

19.
Phys Rev Lett ; 118(24): 247801, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665639

RESUMO

Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

20.
Biophys J ; 111(7): 1575-1585, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705779

RESUMO

Motivated to understand the behavior of biological filaments interacting with membranes of various types, we employ a theoretical model for the shape and thermodynamics of intrinsically helical filaments bound to curved membranes. We show that filament-surface interactions lead to a host of nonuniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to nonlinear coupling between elastic twist and bending of filaments on anisotropically curved surfaces such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria, we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature radius of the surface to which it is bound, even when that radius is much larger than the filament's intrinsic pitch. Typical values of elastic parameters and interaction energies for several prokaryotic and eukaryotic filaments indicate that biopolymers are inherently very sensitive to the coupling between twist, interactions, and geometry and that this could be exploited for regulation of a variety of processes such as the targeted exertion of forces, signaling, and self-assembly in response to geometric cues including the local mean and Gaussian curvatures.


Assuntos
Biopolímeros/química , Membrana Celular/química , Modelos Biológicos , Estrutura Secundária de Proteína , Propriedades de Superfície , Algoritmos , Membrana Celular/metabolismo , Simulação por Computador , Elasticidade , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA