Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 244(5): 651-3, 1994 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-7990146

RESUMO

ADP-ribosylation factor 1 (ARF-1) is a member of a family of small G-proteins that regulate both intracellular vesicle transport and phospholipase D activity. Crystals of ARF-1 suitable for X-ray diffraction analysis have been grown in the presence of GDP by the hanging drop vapour diffusion method. Crystals grow in space group C2 with cell dimensions a = 122.36 A, b = 45.01 A, c = 91.96 A and beta = 133.62 degrees and diffract to at least 2.3 A resolution. A second crystal form has been characterized (space group C2, a = 69.70 A, b = 45.25 A, c = 60.45 A, beta = 109.6 degrees) but does not grow reproducibly.


Assuntos
Proteínas de Ligação ao GTP/química , Fatores de Ribosilação do ADP , Proteínas de Transporte/química , Cristalização , Cristalografia por Raios X
2.
J Mol Biol ; 281(3): 485-99, 1998 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-9698564

RESUMO

A mutation in the dimer interface of Escherichia coli glycinamide ribonucleotide transformylase (GarTfase) disrupts the observed pH-dependent association of the wild-type enzyme, but has no observable effect on the enzyme activity. Here, we assess whether a pH effect on the enzyme's conformation is sufficient by itself to explain the pH-dependence of the GarTfase reaction. A pH-dependent conformational change is observed between two high-resolution crystal structures of the Glu70Ala mutant GarTfase at pH 3.5 (1.8 A) and 7.5 (1.9 A). Residues 110 to 131 in GarTfase undergo a transformation from a disordered loop at pH 3.5, where the enzyme is inactive, to an ordered loop-helix structure at pH 7.5, where the enzyme is active. The ordering of this flexible loop-helix has a direct effect on catalytic residues in the active site, binding of the folate cofactor and shielding of the active site from solvent. A main-chain carbonyl oxygen atom from Tyr115 in the ordered loop forms a hydrogen bond with His108, and thereby provides electronic and structural stabilization of this key active site residue. Kinetic data indicate that the pKa of His108 is in fact raised to 9. 2. The loop movement can be correlated with elevation of the His pKa, but with further stabilization, probably from Asp144, after the binding of folate cofactor. Leu118, also in the loop, becomes positioned near the p-amino benzoic acid binding site, providing additional hydrophobic interactions with the cofactor 10-formyl tetrahydrofolate. Thus, the pH-dependence of the enzyme activity appears to arise from local active site rearrangements and not from differences due to monomer-dimer association.


Assuntos
Escherichia coli/enzimologia , Hidroximetil e Formil Transferases/química , Conformação Proteica , Sítios de Ligação , Coenzimas , Cristalografia por Raios X/métodos , Concentração de Íons de Hidrogênio , Hidroximetil e Formil Transferases/genética , Cinética , Modelos Moleculares , Fosforribosilglicinamido Formiltransferase , Mutação Puntual
3.
Nat Struct Biol ; 2(9): 797-806, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7552752

RESUMO

The ARFs are a family of 21,000 M(r) proteins with biological roles in constitutive secretion and activation of phospholipase D. The structure of ARF-1 complexed to GDP determined from two crystal forms reveals a topology that is similar to that of the protein p21 ras with two differences: an additional amino-terminal helix and an extra beta-strand. The Mg2+ ion in ARF-1 displays a five-coordination sphere; this feature is not seen in p21 ras, due to a shift in the relative position of the DXXG motif between the two proteins. The occurrence of a dimer in one crystal form suggests that ARF-1 may dimerize during its biological function. The dimer interface involves a region of the ARF-1 molecule that is analogous to the effector domain in p21 ras and may mediate interactions with its effectors.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Fatores de Ribosilação do ADP , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/química , Cristalografia por Raios X , Humanos , Magnésio/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Ratos
4.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 8): 1051-4, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10944351

RESUMO

ATIC [5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase)-inosine monophosphate cyclohydrolase (IMPCH)] is a bifunctional enzyme that catalyzes the penultimate and final steps in the de novo purine biosynthesis pathway and thus is an attractive anticancer target. Recombinant avian ATIC has been purified from an Escherichia coli expression system and crystallized in a binary complex with methotrexate (MTX). Crystals were obtained from PEG 4000 or MPEG 5000 buffered at pH 7.0-7.2 and data were collected from a single crystal at 96 K to 2.3 A resolution at the Stanford Synchrotron Radiation Laboratory (SSRL). The crystals are monoclinic and belong to space group P2(1), with unit-cell dimensions a = 65.17, b = 105.93, c = 103.47 A, beta = 108.27 degrees. Assuming two molecules per asymmetric unit, the Matthews coefficient V(m) is 2.63 A(3) Da(-1) and the solvent volume is 52.9%.


Assuntos
Hidroximetil e Formil Transferases/química , Animais , Aves , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Hidroximetil e Formil Transferases/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Purinas/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Nat Struct Biol ; 8(5): 402-6, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11323713

RESUMO

ATIC, the product of the purH gene, is a 64 kDa bifunctional enzyme that possesses the final two activities in de novo purine biosynthesis, AICAR transformylase and IMP cyclohydrolase. The crystal structure of avian ATIC has been determined to 1.75 A resolution by the MAD method using a Se-methionine modified enzyme. ATIC forms an intertwined dimer with an extensive interface of approximately 5,000 A(2) per monomer. Each monomer is composed of two novel, separate functional domains. The N-terminal domain (up to residue 199) is responsible for the IMPCH activity, whereas the AICAR Tfase activity resides in the C-terminal domain (200-593). The active sites of the IMPCH and AICAR Tfase domains are approximately 50 A apart, with no structural evidence of a tunnel connecting the two active sites. The crystal structure of ATIC provides a framework to probe both catalytic mechanisms and to design specific inhibitors for use in cancer chemotherapy and inflammation.


Assuntos
Aves , Hidroximetil e Formil Transferases/química , Complexos Multienzimáticos/química , Nucleotídeo Desaminases/química , Purinas/biossíntese , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Hidroximetil e Formil Transferases/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
6.
Biochemistry ; 38(51): 16783-93, 1999 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-10606510

RESUMO

The crystal structure of Escherichia coli GAR Tfase at 2.1 A resolution in complex with 10-formyl-5,8,10-trideazafolic acid (10-formyl-TDAF, K(i) = 260 nM), an inhibitor designed to form an enzyme-assembled multisubstrate adduct with the substrate, beta-GAR, was studied to determine the exact nature of its inhibitory properties. Rather than forming the expected covalent adduct, the folate inhibitor binds as the hydrated aldehyde (gem-diol) in the enzyme active site, in a manner that mimics the tetrahedral intermediate of the formyl transfer reaction. In this hydrated form, the inhibitor not only provides unexpected insights into the catalytic mechanism but also explains the 10-fold difference in inhibitor potency between 10-formyl-TDAF and the corresponding alcohol, and a further 10-fold difference for inhibitors that lack the alcohol. The presence of the hydrated aldehyde was confirmed in solution by (13)C-(1)H NMR spectroscopy of the ternary GAR Tfase-beta-GAR-10-formyl-TDAF complex using the (13)C-labeled 10-formyl-TDAF. This insight into the behavior of the inhibitor, which is analogous to protease or transaminase inhibitors, provides a novel and previously unrecognized basis for the design of more potent inhibitors of the folate-dependent formyl transfer enzymes of the purine biosynthetic pathway and development of anti-neoplastic agents.


Assuntos
Inibidores Enzimáticos/síntese química , Escherichia coli/enzimologia , Glutamatos/química , Glicina/análogos & derivados , Glicina/química , Hidroximetil e Formil Transferases/antagonistas & inibidores , Hidroximetil e Formil Transferases/química , Quinazolinas/química , Ribonucleotídeos/química , Ligação Competitiva , Isótopos de Carbono , Cristalização , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutamatos/metabolismo , Glicina/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular , Fosforribosilglicinamido Formiltransferase , Ligação Proteica , Quinazolinas/metabolismo , Ribonucleotídeos/metabolismo , Especificidade por Substrato
7.
Biochemistry ; 40(45): 13538-47, 2001 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-11695901

RESUMO

Multisubstrate adduct inhibitors (MAI) of glycinamide ribonucleotide transformylase (GAR Tfase), which incorporate key features of the folate cofactor and the beta-GAR substrate, typically exhibit K(i)'s in the picomolar range. However, these compounds have reduced bioavailability due to the incorporation of a negatively charged phosphate moiety that prevents effective cellular uptake. Thus, a folate analogue that is capable of adduct formation with the substrate on the enzyme active site could lead to a potent GAR Tfase inhibitor that takes advantage of the cellular folate transport systems. We synthesized a dibromide folate analogue, 10-bromo-10-bromomethyl-5,8,10-trideazafolic acid, that was an intermediate designed to assemble with the substrate beta-GAR on the enzyme active site. We have now determined the crystal structure of the Escherichia coli GAR Tfase/MAI complex at 1.6 A resolution to ascertain the nature and mechanism of its time-dependent inhibition. The high-resolution crystal structure clearly revealed the existence of a covalent adduct between the substrate beta-GAR and the folate analogue (K(i) = 20 microM). However, the electron density map surprisingly indicated a C10 hydroxyl in the adduct rather than a bromide and suggested that the multisubstrate adduct is not formed directly from the dibromide but proceeds via an epoxide. Subsequently, we demonstrated the in situ conversion of the dibromide to the epoxide. Moreover, synthesis of the authentic epoxide confirmed that its inhibitory, time-dependent, and cytotoxic properties are comparable to those of the dibromide. Further, inhibition was strongest when the dibromide or epoxide is preincubated with both enzyme and substrate, indicating that inhibition occurs via the enzyme-dependent formation of the multisubstrate adduct. Thus, the crystal structure revealed the successful formation of an enzyme-assembled multisubstrate adduct and highlighted a potential application for epoxides, and perhaps aziridines, in the design of efficacious GAR Tfase inhibitors.


Assuntos
Compostos de Epóxi/química , Hidroximetil e Formil Transferases/química , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/síntese química , Compostos de Epóxi/farmacologia , Escherichia coli/enzimologia , Hidroximetil e Formil Transferases/antagonistas & inibidores , Hidroximetil e Formil Transferases/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Fosforribosilglicinamido Formiltransferase , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA