Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2308605121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374392

RESUMO

The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes , Animais , Peixes/fisiologia , Conservação dos Recursos Naturais/métodos , Humanos
2.
Nature ; 535(7612): 416-9, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27309809

RESUMO

Ongoing declines in the structure and function of the world's coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the 'outliers'­places where ecosystems are substantially better ('bright spots') or worse ('dark spots') than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.


Assuntos
Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecossistema , Geografia , Animais , Teorema de Bayes , Biomassa , Conservação dos Recursos Naturais/legislação & jurisprudência , Pesqueiros/legislação & jurisprudência , Peixes , Fatores Socioeconômicos , Meio Selvagem
3.
Glob Chang Biol ; 27(17): 3956-3968, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021662

RESUMO

Intensified coastal development is compromising the health and functioning of marine ecosystems. A key example of this is the Red Sea, a biodiversity hotspot subjected to increasing local human pressures. While some marine-protected areas (MPAs) were placed to alleviate these stressors, it is unclear whether these MPAs are managed or enforced, thus providing limited protection. Yet, most importantly, MPAs in the Red Sea were not designed using climate considerations, likely diminishing their effectiveness against global stressors. Here, we propose to tailor the design of MPAs in the Red Sea by integrating approaches to enhance climate change mitigation and adaptation. First, including coral bleaching susceptibility could produce a more resilient network of MPAs by safeguarding reefs from different thermal regions that vary in spatiotemporal bleaching responses, reducing the risk that all protected reefs will bleach simultaneously. Second, preserving the basin-wide genetic connectivity patterns that are assisted by mesoscale eddies could further ensure recovery of sensitive populations and maintain species potential to adapt to environmental changes. Finally, protecting mangrove forests in the northern and southern Red Sea that act as major carbon sinks could help offset greenhouse gas emissions. If implemented with multinational cooperation and concerted effort among stakeholders, our portfolio of climate-tailored approaches may help build a network of MPAs in the Red Sea that protects more effectively its coastal resources against escalating coastal development and climate instability. Beyond the Red Sea, we anticipate this study to serve as an example of how to improve the utility of tropical MPAs as climate-informed conservation tools.


Assuntos
Antozoários , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Humanos , Oceano Índico
4.
Nat Commun ; 14(1): 5368, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666831

RESUMO

Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world's coral reef fisheries.


Assuntos
Recifes de Corais , Pesqueiros , Animais , Benchmarking , Biodiversidade , Ecossistema
5.
Nat Commun ; 13(1): 4774, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050297

RESUMO

Setting appropriate conservation strategies in a multi-threat world is a challenging goal, especially because of natural complexity and budget limitations that prevent effective management of all ecosystems. Safeguarding the most threatened ecosystems requires accurate and integrative quantification of their vulnerability and their functioning, particularly the potential loss of species trait diversity which imperils their functioning. However, the magnitude of threats and associated biological responses both have high uncertainties. Additionally, a major difficulty is the recurrent lack of reference conditions for a fair and operational measurement of vulnerability. Here, we present a functional vulnerability framework that incorporates uncertainty and reference conditions into a generalizable tool. Through in silico simulations of disturbances, our framework allows us to quantify the vulnerability of communities to a wide range of threats. We demonstrate the relevance and operationality of our framework, and its global, scalable and quantitative comparability, through three case studies on marine fishes and mammals. We show that functional vulnerability has marked geographic and temporal patterns. We underline contrasting contributions of species richness and functional redundancy to the level of vulnerability among case studies, indicating that our integrative assessment can also identify the drivers of vulnerability in a world where uncertainty is omnipresent.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Peixes/fisiologia , Mamíferos
6.
Nat Ecol Evol ; 6(6): 701-708, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35379939

RESUMO

Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biodiversidade , Biomassa , Mudança Climática
7.
Mar Pollut Bull ; 166: 112244, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740655

RESUMO

In the face of increasing anthropogenic threats, coastal nations need to reach common ground for effective marine conservation. Understanding species' connectivity can reveal how nations share resources, demonstrating the need for cooperative protection efforts. Unfortunately, connectivity information is rarely integrated into the design of marine protected areas (MPAs). This is exemplified in the Red Sea where biodiversity is only nominally protected by a non-cohesive network of small-sized MPAs, most of which are barely implemented. Here, we showcase the potential of using connectivity patterns of flagship species to consolidate conservation efforts in the Red Sea. We argue that a large-scale MPA (LSMPA) would more effectively preserve Red Sea species' multinational migration routes. A connectivity-informed LSMPA approach provides thus one avenue to unite coastal nations toward acting for the common good of conservation and reverse the global decline in marine biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Ecossistema , Peixes , Oceano Índico
8.
Science ; 368(6488): 307-311, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299952

RESUMO

The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Pesqueiros , Animais , Peixes , Objetivos , Atividades Humanas , Humanos
9.
Biol Rev Camb Philos Soc ; 90(4): 1215-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25423947

RESUMO

Well-designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1-0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5-3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3-10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5-15 km, and self-recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Peixes/fisiologia , Animais , Biodiversidade , Peixes/crescimento & desenvolvimento , Larva/fisiologia
10.
Nat Commun ; 6: 8208, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26364769

RESUMO

Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Tomada de Decisões , Política Ambiental , Formulação de Políticas , Animais , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA