Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 158(2): 288-299, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036629

RESUMO

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating ß-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Carboidratos da Dieta/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Butiratos/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Pólipos do Colo/metabolismo , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Reparo de Erro de Pareamento de DNA , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/metabolismo , Organismos Livres de Patógenos Específicos , beta Catenina/metabolismo
2.
Blood ; 118(11): 3013-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21788338

RESUMO

Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to an approximately 10-fold increase in the mutation frequency in most tissues. By contrast, Msh2 deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V region as a dU:dG mismatch produced by AID initiates modifications by MMR, resulting in mutations at nearby A:T base pairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene that is not mutated by AID. Strikingly, we found that GC B cells accumulate 5 times more mutations at a reporter gene than during the development of the mouse. Notably, the mutation frequency at this reporter gene was approximately 10 times greater in Msh2(-/-) compared with wild-type GC B cells cells. In contrast to the V region, the increased level of mutations at A:T base pairs in GC B cells was not caused by MMR. These results show that in GC B cells, (1) MMR functions normally at an AID-insensitive gene and (2) the frequency of background mutagenesis is greater in GC B cells than in their precursor follicular B cells.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/metabolismo , Reparo de Erro de Pareamento de DNA/fisiologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Animais , Linfócitos B/citologia , Células Cultivadas , Citidina Desaminase/fisiologia , Reparo de Erro de Pareamento de DNA/genética , Regulação da Expressão Gênica , Centro Germinativo/citologia , Repressores Lac/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mutação/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transgenes/genética
3.
Exp Hematol ; 61: 52-58, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496532

RESUMO

C-Myc overexpression mediates lymphomagenesis; however, secondary genetic lesions are required for its full oncogenic potential. The origin and the mechanism of formation of these mutations are unclear. Using the lacI mutation detection system, we show that secondary mutations occur early in B-cell development and are repaired by Msh2. The mutations at the lacI gene were predominantly at C:G base pairs and CpG motifs, suggesting that they were formed due to cytosine deamination or oxidative damage of G. Therefore, we investigated the role of Ogg1 and UNG glycosylases in c-Myc-driven lymphomagenesis but found that their deficiencies did not influence disease outcome in the Eµ c-Myc mouse model. We also show that Rag proteins do not contribute to secondary lesions in this model. Our work suggests that mutations at C:G base pairs that are repaired primarily by the mismatch repair system arise early in B-cell ontogeny to promote c-Myc-driven lymphomagenesis.


Assuntos
DNA Glicosilases/genética , Linfoma/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Uracila-DNA Glicosidase/genética , Animais , Linfócitos B/citologia , Citometria de Fluxo , Linfoma/genética , Camundongos , Mutação , Regulação para Cima
4.
Arthritis Rheumatol ; 68(3): 679-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26473967

RESUMO

OBJECTIVE: To identify an immunologic basis for the male sex bias in ankylosing spondylitis (AS). METHODS: Cohorts of male and female patients with AS and age- and sex-matched healthy control subjects were selected, and the levels of serum cytokines (interferon-γ [IFNγ], tumor necrosis factor α, interleukin-17A [IL-17A], and IL-6) were examined by enzyme-linked immunosorbent assay, the frequencies of Th1 and Th17 cells were assessed by flow cytometry, and whole blood gene expression was analyzed using both microarray and NanoString approaches. RESULTS: The frequency of IL-17A and Th17 cells, both of which are key factors in the inflammatory Th17 axis, was elevated in male patients with AS but not in female patients with AS. In contrast, AS-associated alterations in the Th1 axis, such as the frequency of IFNγ and Th1 cells in serum, were independent of a patient's sex. Results of microarray analysis supported an altered Th17 axis in male patients, with a specific increase in IL17RA. In addition, male and female patients with AS displayed shared gene expression patterns, while male patients with AS had additional alterations in gene expression that were not seen in female patients with AS. The differential sex-related immune profiles were independent of HLA-B27 status, clinical disease activity (as measured by the Bath Ankylosing Spondylitis Disease Activity Index), or treatment (with nonsteroidal antiinflammatory drugs or biologic agents), implicating intrinsic sexual dimorphism in AS. CONCLUSION: The results of this study demonstrate distinct sexual dimorphism in the activation status of the immune system in patients with AS, particularly in the Th17 axis. This dimorphism could underlie sex-related differences in the clinical features of AS and could provide a rationale for sex-specific treatment of AS.


Assuntos
Espondilite Anquilosante/imunologia , Células Th17/patologia , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Interferon gama/sangue , Interleucina-17/sangue , Masculino , Análise em Microsséries , Fragmentos de Peptídeos/sangue , Reação em Cadeia da Polimerase , Transcrição Reversa , Fatores Sexuais , Espondilite Anquilosante/sangue , Células Th1/patologia , Fator de Necrose Tumoral alfa/sangue
5.
PLoS One ; 8(5): e65204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741483

RESUMO

Gut microbiota has been linked to a number of human diseases including colon cancer. However, the mechanism through which gut bacteria influence colon cancer development and progression remains unclear. Perturbation of the homeostasis between the host immune system and microbiota leads to inflammation and activation of macrophages which produce large amounts of nitric oxide that acts as a genotoxic effector molecule to suppress bacterial growth. However, nitric oxide also has genotoxic effects to host cells by producing mutations that can predispose to colon cancer development. The major DNA lesions caused by nitric oxide are 8oxoG and deamination of deoxycytosine bases. Cellular glycosylases that belong to the base excision repair pathway have been demonstrated to repair these mutations. Recent evidence suggests that the mismatch repair pathway (MMR) might also repair nitric oxide-induced DNA damage. Since deficiency in MMR predisposes to colon cancer, we hypothesized that MMR-deficient colon epithelial cells are incapable of repairing nitric-oxide induced genetic lesions that can promote colon cancer. Indeed, we found that the MMR pathway repairs nitric oxide-induced DNA mutations in cell lines. To test whether nitric oxide promotes colon cancer, we genetically ablated the inducible nitric oxide synthase (iNOS) or inhibited iNOS activity in the APC(Min/+)Msh2(-/-) mouse model of colon cancer. However, despite the fact that nitric oxide production was strongly reduced in the colon using both approaches, colon cancer incidence was not affected. These data show that nitric oxide and iNOS do not promote colon cancer in APC(Min/+)Msh2(-/-) mice.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Pólipos do Colo/genética , Pólipos do Colo/metabolismo , Proteína 2 Homóloga a MutS/genética , Mutação , Óxido Nítrico/metabolismo , Animais , Reparo de Erro de Pareamento de DNA , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA