Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Physiol Rev ; 92(1): 75-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22298652

RESUMO

Since the realization that embryonic stem cells are maintained in a pluripotent state through the interplay of a number of key signal transduction pathways, it is becoming increasingly clear that stemness and pluripotency are defined by the complex molecular convergence of these pathways. Perhaps this has most clearly been demonstrated by the capacity to induce pluripotency in differentiated cell types, so termed iPS cells. We are therefore building an understanding of how cells may be maintained in a pluripotent state, and how we may manipulate cells to drive them between committed and pluripotent compartments. However, it is less clear how cells normally pass in and out of the stem cell compartment under normal and diseased physiological states in vivo, and indeed, how important these pathways are in these settings. It is also clear that there is a potential "dark side" to manipulating the stem cell compartment, as deregulation of somatic stem cells is being increasingly implicated in carcinogenesis and the generation of "cancer stem cells." This review explores these relationships, with a particular focus on the role played by key molecular regulators of stemness in tissue repair, and the possibility that a better understanding of this control may open the door to novel repair strategies in vivo. The successful development of such strategies has the potential to replace or augment intervention-based strategies (cell replacement therapies), although it is clear they must be developed with a full understanding of how such approaches might also influence tumorigenesis.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica , Terapia Baseada em Transplante de Células e Tecidos , Humanos
2.
J Pathol ; 245(3): 270-282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603746

RESUMO

Epigenetic regulation plays a key role in the link between inflammation and cancer. Here we examine Mbd2, which mediates epigenetic transcriptional silencing by binding to methylated DNA. In separate studies the Mbd2-/- mouse has been shown (1) to be resistant to intestinal tumourigenesis and (2) to have an enhanced inflammatory/immune response, observations that are inconsistent with the links between inflammation and cancer. To clarify its role in tumourigenesis and inflammation, we used constitutive and conditional models of Mbd2 deletion to explore its epithelial and non-epithelial roles in the intestine. Using a conditional model, we found that suppression of intestinal tumourigenesis is due primarily to the absence of Mbd2 within the epithelia. Next, we demonstrated, using the DSS colitis model, that non-epithelial roles of Mbd2 are key in preventing the transition from acute to tumour-promoting chronic inflammation. Combining models revealed that prior to inflammation the altered Mbd2-/- immune response plays a role in intestinal tumour suppression. However, following inflammation the intestine converts from tumour suppressive to tumour promoting. To summarise, in the intestine the normal function of Mbd2 is exploited by cancer cells to enable tumourigenesis, while in the immune system it plays a key role in preventing tumour-enabling inflammation. Which role is dominant depends on the inflammation status of the intestine. As environmental interactions within the intestine can alter DNA methylation patterns, we propose that Mbd2 plays a key role in determining whether these interactions are anti- or pro-tumourigenic and this makes it a useful new epigenetic model for inflammation-associated carcinogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes APC , Mucosa Intestinal/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Células Th1/metabolismo , Células Th1/patologia , Células Th2/metabolismo , Células Th2/patologia
3.
BMC Cancer ; 16: 399, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27388476

RESUMO

BACKGROUND: Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. METHODS: Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. RESULTS: HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). CONCLUSIONS: Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation.


Assuntos
Neoplasias do Colo/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Serina Endopeptidases/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Centrossomo/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo , Epigênese Genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Camundongos , Transplante de Neoplasias , Poliploidia , Regiões Promotoras Genéticas
4.
J Pathol ; 233(2): 124-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615332

RESUMO

The heterogeneous nature of mammary tumours may arise from different initiating genetic lesions occurring in distinct cells of origin. Here, we generated mice in which Brca2, Pten and p53 were depleted in either basal mammary epithelial cells or luminal oestrogen receptor (ER)-negative cells. Basal cell-origin tumours displayed similar histological phenotypes, regardless of the depleted gene. In contrast, luminal ER-negative cells gave rise to diverse phenotypes, depending on the initiating lesions, including both ER-negative and, strikingly, ER-positive invasive ductal carcinomas. Molecular profiling demonstrated that luminal ER-negative cell-origin tumours resembled a range of the molecular subtypes of human breast cancer, including basal-like, luminal B and 'normal-like'. Furthermore, a subset of these tumours resembled the 'claudin-low' tumour subtype. These findings demonstrate that not only do mammary tumour phenotypes depend on the interactions between cell of origin and driver genetic aberrations, but also multiple mammary tumour subtypes, including both ER-positive and -negative disease, can originate from a single epithelial cell type. This is a fundamental advance in our understanding of tumour aetiology.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genética , Animais , Proteína BRCA2/deficiência , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Claudinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Predisposição Genética para Doença , Humanos , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , Receptores de Estrogênio/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/deficiência
5.
Mol Nutr Food Res ; 66(19): e2200234, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36045438

RESUMO

SCOPE: Black raspberries (BRBs) have colorectal cancer (CRC) chemo-preventative effects. As CRC originates from an intestinal stem cell (ISC) this study has investigated the impact of BRBs on normal and mutant ISCs. METHODS AND RESULTS: Mice with an inducible Apcfl mutation in either the ISC (Lgr5CreERT2 ) or intestinal crypt (AhCre/VillinCreERT2 ) are fed a control or 10% BRB-supplemented diet. This study uses immunohistochemistry, gene expression analysis, and organoid culture to evaluate the effect of BRBs on intestinal homeostasis. RNAscope is performed for ISC markers on CRC adjacent normal colonic tissue pre and post BRB intervention from patients. 10% BRB diet has no overt effect on murine intestinal homeostasis, despite a reduced stem cell number. Following Apc ISC deletion, BRB diet extends lifespan and reduces tumor area. In the AhCre model, BRB diet attenuates the "crypt-progenitor" phenotype and reduces ISC marker gene expression. In ex vivo culture BRBs reduce the self-renewal capacity of murine and human Apc deficient organoids. Finally, the study observes a reduction in ISC marker gene expression in adjacent normal crypts following introduction of BRBs to the human bowel. CONCLUSION: BRBs play a role in CRC chemoprevention by protectively regulating the ISC compartment and further supports the use of BRBs in CRC prevention.


Assuntos
Rubus , Animais , Colo/metabolismo , Dieta , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Células-Tronco
6.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003256

RESUMO

Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER-) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER- mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER- cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.


Assuntos
Amplificação de Genes , Loci Gênicos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Receptor ErbB-2/genética , Reprodução/fisiologia , Via de Sinalização Wnt/genética , Alelos , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Epitélio/patologia , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Integrases/metabolismo , Estimativa de Kaplan-Meier , Glândulas Mamárias Animais/patologia , Metaplasia , Camundongos Transgênicos , Fenótipo
7.
Oncotarget ; 9(92): 36430-36443, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30559928

RESUMO

Leukocyte cell-derived chemotaxin 2 (Lect2) is a chemokine-like chemotactic factor that has been identified as a downstream target of the Wnt signalling pathway. Whilst the primary function of Lect2 is thought to be in modulating the inflammatory process, it has recently been implicated as a potential inhibitor of the Wnt pathway. Deregulation of the Wnt pathway, often due to loss of the negative regulator APC, is found in ~80% of colorectal cancer (CRC). Here we have used the ApcMin/+Lect2-/- mouse model to characterise the role of Lect2 in Wnt-driven intestinal tumourigenesis. Histopathological, immunohistochemical, PCR and flow cytometry analysis were employed to identify the role of Lect2 in the intestine. The ApcMin/+Lect2-/- mice had a reduced mean survival and a significantly increased number of adenomas in the small intestine with increased severity. Analysis of Lect2 loss indicated it had no effect on the Wnt pathway in the intestine but significant differences were observed in circulating inflammatory markers, CD4+ T cells, and T cell lineage-specification factors. In summary, in the murine intestine loss of Lect2 promotes the initiation and progression of Wnt-driven colorectal cancer. This protection is performed independently of the Wnt signalling pathway and is associated with an altered inflammatory environment during Wnt-driven tumorigenesis.

8.
J Mol Med (Berl) ; 83(5): 329-42, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827760

RESUMO

Apolipoprotein E is a multifunctional protein that is synthesized by the liver and several peripheral tissues and cell types, including macrophages. The protein is involved in the efficient hepatic uptake of lipoprotein particles, stimulation of cholesterol efflux from macrophage foam cells in the atherosclerotic lesion, and the regulation of immune and inflammatory responses. Apolipoprotein E deficiency in mice leads to the development of atherosclerosis and re-expression of the protein reduces the extent of the disease. This review presents evidence for the potent anti-atherogenic action of apolipoprotein E and describes our current understanding of its multiple functions and regulation by factors implicated in the pathogenesis of cardiovascular disease.


Assuntos
Apolipoproteínas E/metabolismo , Arteriosclerose/metabolismo , Animais , Apolipoproteínas E/sangue , Apolipoproteínas E/genética , Arteriosclerose/genética , Arteriosclerose/patologia , Colesterol/sangue , Humanos , Lipoproteínas/sangue , Lipoproteínas/classificação , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos/metabolismo
9.
Curr Protoc Pharmacol ; 70: 14.36.1-14.36.14, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26331886

RESUMO

Breast cancer is a heterogeneous condition with no single standard of treatment and no definitive method for determining whether a tumor will respond to therapy. The development of murine models that faithfully mimic specific human breast cancer subtypes is critical for the development of patient-specific treatments. While the artificial nature of traditional in vivo xenograft models used to characterize novel anticancer treatments has limited clinical predictive value, the development of genetically engineered mouse models (GEMMs) makes it possible to study the therapeutic responses in an intact microenvironment. GEMMs have proven to be an experimentally tractable platform for evaluating the efficacy of novel therapeutic combinations and for defining the mechanisms of acquired resistance. Described in this overview are several of the more popular breast cancer GEMMs, including details on their value in elucidating the molecular mechanisms of this disorder.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Engenharia Genética/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Feminino , Humanos , Camundongos , Receptor ErbB-2/genética
10.
Cell Signal ; 23(3): 542-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21070853

RESUMO

Liver X receptors (LXRs) are ligand-dependent transcription factors that are activated by metabolites of cholesterol, oxysterols, and a number of synthetic agonists. LXRs play potent anti-atherogenic roles in part by stimulating the efflux of cholesterol from macrophage foam cells. The LXR-induced expression of ATP-binding cassette transporter (ABC)-A1 and Apolipoprotein E (ApoE) in macrophages is essential for the stimulation of cholesterol efflux and the prevention of atherosclerotic development. Unfortunately, the signaling pathways underlying such regulation are poorly understood and were therefore investigated in human macrophages. The expression of ApoE and ABCA1 induced by synthetic or natural LXR ligands [TO901317, GW3965, and 22-(R)-hydroxycholesterol (22-(R)-HC), respectively] was attenuated by inhibitors of c-Jun N-terminal kinase (JNK) (curcumin and SP600125) and phosphoinositide 3-kinase (PI3K) (LY294002). Similar results were obtained with ABCG1 and LXR-α, two other LXR target genes. LXR agonists activated several components of the JNK pathway (SEK1, JNK and c-Jun) along with AKT, a downstream target for PI3K. In addition, dominant negative mutants of JNK and PI3K pathways inhibited the LXR-agonists-induced activity of the ABCA1 and LXR-α gene promoters in transfected cells. LXR agonists also induced the binding of activator protein-1 (AP-1), a key transcription factor family regulated by JNK, to recognition sequences present in the regulatory regions of the ApoE and ABCA1 genes. These studies reveal a novel role for JNK and PI3K/AKT signaling in the LXR-regulated expression in macrophages of several key genes implicated in atherosclerosis.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Macrófagos/enzimologia , Receptores Nucleares Órfãos/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Células Cultivadas , Colesterol/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA