Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Bioorg Chem ; 151: 107659, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39059072

RESUMO

CK1δ is a serine-threonine kinase involved in several pathological conditions including neuroinflammation and neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Specifically, it seems that an inhibition of CK1δ could have a neuroprotective effect in these conditions. Here, a series of [1,2,4]triazolo[1,5-a][1,3,5]triazines were developed as ATP-competitive CK1δ inhibitors. Both positions 2 and 5 have been explored leading to a total of ten compounds exhibiting IC50s comprised between 29.1 µM and 2.08 µM. Three of the four most potent compounds (IC50 < 3 µM) bear a thiophene ring at the 2 position. All compounds have been submitted to computational studies that identified the chain composed of at least 2 atoms (e.g., nitrogen and carbon atoms) at the 5 position as crucial to determine a key bidentate hydrogen bond with Leu85 of CK1δ. Most potent compounds have been tested in vitro, resulting passively permeable to the blood-brain barrier and, safe and slight neuroprotective on a neuronal cell model. These results encourage to further structural optimize the series to obtain more potent CK1δ inhibitors as possible neuroprotective agents to be tested on models of the above-mentioned neurodegenerative diseases.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675428

RESUMO

Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA