Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 184(22): 5670-5685.e23, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637702

RESUMO

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.


Assuntos
Técnicas Biossensoriais , Peptídeos/química , Imagem Individual de Molécula , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Embrião de Mamíferos/citologia , Ativação Enzimática , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Camundongos , Nanopartículas/química , Conformação Proteica , Quinases da Família src/metabolismo
2.
Cell ; 178(2): 458-472.e19, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31178119

RESUMO

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics.


Assuntos
Corantes Fluorescentes/química , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Genes Reporter , Células HEK293 , Humanos , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , Ribossomos/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia
3.
Cell ; 165(3): 593-605, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27062924

RESUMO

The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Cromatina/metabolismo , Desoxirribonucleases/metabolismo , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição/metabolismo
4.
Nat Methods ; 19(2): 149-158, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949811

RESUMO

The last three decades have brought a revolution in fluorescence microscopy. The development of new microscopes, fluorescent labels and analysis techniques has pushed the frontiers of biological imaging forward, moving from fixed to live cells, from diffraction-limited to super-resolution imaging and from simple cell culture systems to experiments in vivo. The large and ever-evolving collection of tools can be daunting for biologists, who must invest substantial time and effort in adopting new technologies to answer their specific questions. This is particularly relevant when working with small-molecule fluorescent labels, where users must navigate the jargon, idiosyncrasies and caveats of chemistry. Here, we present an overview of chemical dyes used in biology and provide frank advice from a chemist's perspective.


Assuntos
Bioquímica/métodos , Corantes Fluorescentes/química , Aminas/química , Fotodegradação , Compostos de Sulfidrila/química , Raios Ultravioleta
5.
Genes Dev ; 30(18): 2106-2118, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798851

RESUMO

Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A "step-wise" preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB-promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II-TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.


Assuntos
Regiões Promotoras Genéticas/fisiologia , Multimerização Proteica/fisiologia , Fatores de Transcrição TFII/metabolismo , Ativação Transcricional/fisiologia , Linhagem Celular Tumoral , Humanos , Microscopia de Interferência , Ligação Proteica , RNA Polimerase II/metabolismo , Deleção de Sequência , Fatores de Tempo
6.
J Am Chem Soc ; 145(42): 23000-23013, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842926

RESUMO

Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas/química , Microscopia de Fluorescência/métodos , Lactonas
7.
Nat Methods ; 17(8): 815-821, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719532

RESUMO

Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.


Assuntos
Corantes Fluorescentes/química , Rodaminas/química , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Microscopia de Fluorescência/métodos , Estrutura Molecular
8.
Nat Methods ; 17(2): 225-231, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907447

RESUMO

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.


Assuntos
Imagem Óptica , Frações Subcelulares/metabolismo , Animais , Humanos , Organelas/metabolismo
9.
J Am Chem Soc ; 143(28): 10793-10803, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250803

RESUMO

Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Rodaminas/química , Silício/química , Tetrazóis/síntese química , Animais , Catálise , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Tetrazóis/química , Células Tumorais Cultivadas
10.
Proc Natl Acad Sci U S A ; 115(2): 343-348, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284749

RESUMO

Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.


Assuntos
Rastreamento de Células/métodos , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Cinética , Neurônios/citologia , Imagem com Lapso de Tempo/métodos , Peixe-Zebra
11.
Nat Methods ; 14(10): 987-994, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869757

RESUMO

Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.


Assuntos
Corantes/química , Processamento de Imagem Assistida por Computador/métodos , Coloração e Rotulagem/métodos , Animais , Encéfalo/anatomia & histologia , Linhagem Celular , Drosophila , Larva/citologia , Camundongos , Microscopia de Fluorescência , Processos Fotoquímicos
12.
Nano Lett ; 19(1): 500-505, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525682

RESUMO

We demonstrate stimulated emission depletion (STED) microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multicolor, and live-cell STED microscopy.

13.
Nat Methods ; 13(4): 359-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950745

RESUMO

Extending three-dimensional (3D) single-molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, because of the limitations of both conventional imaging modalities and conventional labeling techniques, it is a challenge to localize molecules in three dimensions with high precision in such samples while simultaneously achieving the labeling densities required for high resolution of densely crowded structures. Here we combined lattice light-sheet microscopy with newly developed, freely diffusing, cell-permeable chemical probes with targeted affinity for DNA, intracellular membranes or the plasma membrane. We used this combination to perform high-localization precision, ultrahigh-labeling density, multicolor localization microscopy in samples up to 20 µm thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein-specific photoactivable fluorophores, providing a mutually compatible, single-platform alternative to correlative light-electron microscopy over large volumes.


Assuntos
Membrana Celular/ultraestrutura , Embrião não Mamífero/ultraestrutura , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Mitocôndrias/ultraestrutura , Animais , Células COS , Chlorocebus aethiops , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Células LLC-PK1 , Suínos , Peixe-Zebra/embriologia
14.
Nat Methods ; 13(12): 985-988, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27776112

RESUMO

Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Processos Fotoquímicos , Imagem Individual de Molécula/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Células COS , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Células-Tronco Embrionárias , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/efeitos da radiação , Humanos , Ligantes , Luz , Camundongos , Microscopia de Fluorescência , Estrutura Molecular , Fotoquímica/métodos , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/efeitos da radiação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Coloração e Rotulagem
15.
Proc Natl Acad Sci U S A ; 113(44): E6877-E6886, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791158

RESUMO

Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single ß-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of ß-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Transporte de RNA/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/biossíntese , Actinas/genética , Actinas/metabolismo , Animais , Movimento Celular , Citoplasma/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Neurônios/citologia , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
16.
Nat Methods ; 12(3): 244-50, 3 p following 250, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25599551

RESUMO

Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.


Assuntos
Corantes Fluorescentes/química , Microscopia Ultravioleta/métodos , Imagem Molecular/métodos , Azetidinas/química , Técnicas de Química Sintética , Cumarínicos/química , Fluoresceína/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Modelos Moleculares , Teoria Quântica , Rodaminas/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta/métodos , Relação Estrutura-Atividade
17.
Methods ; 123: 76-88, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28315485

RESUMO

Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.


Assuntos
Células Epiteliais/metabolismo , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Receptores de Glucocorticoides/genética , Imagem Individual de Molécula/métodos , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Cinética , Células MCF-7 , Camundongos , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
Bioconjug Chem ; 27(2): 474-80, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26636613

RESUMO

Fluorogenic molecules are important tools for biological and biochemical research. The majority of fluorogenic compounds have a simple input-output relationship, where a single chemical input yields a fluorescent output. Development of new systems where multiple inputs converge to yield an optical signal could refine and extend fluorogenic compounds by allowing greater spatiotemporal control over the fluorescent signal. Here, we introduce a new red-shifted fluorescein derivative, Virginia Orange, as an exceptional scaffold for single- and dual-input fluorogenic molecules. Unlike fluorescein, installation of a single masking group on Virginia Orange is sufficient to fully suppress fluorescence, allowing preparation of fluorogenic enzyme substrates with rapid, single-hit kinetics. Virginia Orange can also be masked with two independent moieties; both of these masking groups must be removed to induce fluorescence. This allows facile construction of multi-input fluorogenic probes for sophisticated sensing regimes and genetic targeting of latent fluorophores to specific cellular populations.


Assuntos
Fluoresceína/química , Corantes Fluorescentes/química , Animais , Biocatálise , Células COS , Chlorocebus aethiops , Fluoresceína/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Imagem Óptica
19.
Angew Chem Int Ed Engl ; 55(5): 1723-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26661345

RESUMO

The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules.


Assuntos
Microscopia de Fluorescência/métodos , Rodaminas/química , Silício/análise
20.
Angew Chem Int Ed Engl ; 55(29): 8363-6, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27218487

RESUMO

Photolabile protecting groups (or "photocages") enable precise spatiotemporal control of chemical functionality and facilitate advanced biological experiments. Extant photocages exhibit a simple input-output relationship, however, where application of light elicits a photochemical reaction irrespective of the environment. Herein, we refine and extend the concept of photolabile groups, synthesizing the first Ca(2+) -sensitive photocage. This system functions as a chemical coincidence detector, releasing small molecules only in the presence of both light and elevated [Ca(2+) ]. Caging a fluorophore with this ion-sensitive moiety yields an "ion integrator" that permanently marks cells undergoing high Ca(2+) flux during an illumination-defined time period. Our general design concept demonstrates a new class of light-sensitive material for cellular imaging, sensing, and targeted molecular delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA