Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(31): 15345-52, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16884254

RESUMO

A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film.

2.
Chem Commun (Camb) ; (24): 3014-5, 2003 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-14703834

RESUMO

Probe beam deflection during chronoamperometric oxidation-reduction of osmium complex in layer-by-layer self-assembled redox active polyelectrolyte multilayers has shown that the nature of the charge in the topmost layer determines the ion flux that balances the redox charge.

3.
Langmuir ; 20(6): 2349-55, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15835695

RESUMO

The sulfonation of polyaniline (PANI) films by nucleophilic addition of sulfite ion has been controlled through the polymer oxidation state under electrochemical control. The process was monitored by in situ electrochemical quartz crystal microbalance (EQCM), and the polymer oxidation was accomplished by electrode potential steps in sulfite aqueous solutions. The nucleophilic addition of sulfite to PANI only takes place on the oxidized polymer. From the ratio of added mass to the injected charge, the degree of sulfonation has been obtained with a yield as high as 50%. It has been observed that the ion-exchange mechanism during the oxidation-reduction process in the resulting sulfonated polymer is analogous to the polymer produced by electrophilic sulfonation of polyaniline or by copolymerization of aniline with aminosulfonic acids, unlike the ionic exchange observed for unmodified PANI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA