Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163977

RESUMO

COVID-19 has spread around the world and caused serious public health and social problems. Although several vaccines have been authorized for emergency use, new effective antiviral drugs are still needed. Some repurposed drugs including Chloroquine, Hydroxychloroquine and Remdesivir were immediately used to treat COVID-19 after the pandemic. However, the therapeutic effects of these drugs have not been fully demonstrated in clinical studies. In this paper, we found an antimalarial drug, Naphthoquine, showed good broad-spectrum anti-coronavirus activity. Naphthoquineinhibited HCoV-229E, HCoV-OC43 and SARS-CoV-2 replication in vitro, with IC50 = 2.05 ± 1.44 µM, 5.83 ± 0.74 µM, and 2.01 ± 0.38 µM, respectively. Time-of-addition assay was also performed to explore at which stage Naphthoquine functions during SARS-CoV-2 replication. The results suggested that Naphthoquine may influence virus entry and post-entry replication. Considering the safety of Naphthoquine was even better than that of Chloroquine, we think Naphthoquine has the potential to be used as a broad-spectrum drug for coronavirus infection.


Assuntos
1-Naftilamina/análogos & derivados , Aminoquinolinas/farmacologia , Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , 1-Naftilamina/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Humanos , Técnicas In Vitro , Células Vero , Replicação Viral/efeitos dos fármacos
2.
Emerg Infect Dis ; 24(4): 663-672, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432091

RESUMO

Avian influenza A(H7N9) virus has caused 5 epidemic waves in China since its emergence in 2013. We investigated the dynamic changes of antibody response to this virus over 1 year postinfection in 25 patients in Suzhou City, Jiangsu Province, China, who had laboratory-confirmed infections during the fifth epidemic wave, October 1, 2016-February 14, 2017. Most survivors had relatively robust antibody responses that decreased but remained detectable at 1 year. Antibody response was variable; several survivors had low or undetectable antibody titers. Hemagglutination inhibition titer was >1:40 for <40% of the survivors. Measured in vitro in infected mice, hemagglutination inhibition titer predicted serum protective ability. Our findings provide a helpful serologic guideline for identifying subclinical infections and for developing effective vaccines and therapeutics to counter H7N9 virus infections.


Assuntos
Anticorpos Antivirais/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Idoso , Animais , Anticorpos Antivirais/sangue , Feminino , História do Século XXI , Hospitalização , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Influenza Humana/história , Influenza Humana/virologia , Masculino , Camundongos , Pessoa de Meia-Idade , Testes Sorológicos , Sobreviventes
4.
Acta Biochim Biophys Sin (Shanghai) ; 49(1): 74-82, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27974288

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infection in infants and children, but there is still no licensed vaccine available. In this report, we developed virus-like particle (VLP) vaccines based on the Bac-to-Bac baculovirus expression system, consisting of an influenza virus matrix (M1) protein and the RSV fusion protein (F) or glycoprotein (G). These RSV VLPs were identified by western blot analysis and electron microscopy. Female BALB/c mice immunized intranasally (i.n.) with RSV-F VLPs, RSV-G VLPs, or both showed viral-specific antibody responses against RSV. Total IgG, IgG1, IgG2a, and mucosal IgA were detected in mice with RSV-F plus RSV-G VLPs, revealing potent cellular and mucosal immune responses. Moreover, we found that these mixed RSV VLPs conferred enhanced protection against live RSV challenges, showing significant decreases in lung viral replication and obvious attenuation of histopathological changes associated with viral infections. These results demonstrate that RSV-F plus RSV-G VLPs by intranasal vaccination is a promising vaccine candidate that warrants further evaluation using cotton rat and primate models.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Administração Intranasal , Animais , Feminino , Imunidade Celular , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
J Gen Virol ; 95(Pt 9): 1886-1891, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914066

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.


Assuntos
Vírus da Influenza A/genética , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Células COS , Linhagem Celular Tumoral , Embrião de Galinha , Chlorocebus aethiops , Cães , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Testes de Inibição da Hemaglutinação , Humanos , Imunização , Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Vírus Respiratório Sincicial/imunologia , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
6.
Exp Ther Med ; 26(4): 478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37753295

RESUMO

The aim of the present study was to elucidate the potential diagnostic value of urinary N-glycoprotein in patients with IgA nephropathy (IgAN) using mass spectrometry (MS). All procedures were performed between June 2021 and June 2023 at Guangan People's Hospital (Guangan, China). Fresh mid-morning fasting midstream urine samples were collected from a total of 30 patients with IgAN and 30 sex- and age-matched healthy volunteers. Data acquired from 6 participants are available through ProteomeXchange with the identifier PXD041151. By comparison between the IgAN group (n=3) and healthy controls (n=3) and selection criteria of P<0.05 and |log fold-change|>2, a total of 11 upregulated and 22 downregulated glycoproteins in patients with IgAN were identified. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that glycoproteins are involved in various functions, such as the regulation of cell growth, cell adhesion, cellular component organization and protein binding, as well as multiple pathways, including p53, Notch and mTOR signaling pathways. The urine levels of afamin were further measured by ELISA in a validation cohort to assess the diagnostic performance of the single indicator model. In conclusion, MS-based proteomics of urinary glycoproteins may be an alternative option for diagnosing patients with IgAN. Biomarkers of IgAN may include, but are not limited to, CCL25, PD-L1, HLA-DRB1, IL7RD and WDR82. In addition, the levels of urinary AFM indicators are of diagnostic value for IgAN.

7.
Virus Res ; 335: 199201, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37595663

RESUMO

Preclinical studies indicate that SARS-CoV-2 nucleocapsid (N)-based vaccines, along with other viral protein(s), confer protection in various animal models against infection by SARS-CoV-2 ancestral virus and variants of concern. However, the optimal vaccination procedure and the role of N-specific host adaptive immune responses remain elusive. Here, we report that intranasal inoculation with replication-deficient human adenovirus type 5 expressing SARS-CoV-2 N protein (Ad5-N) conferred no protection in the lung of female BALB/c mice upon re-encountering the antigen, either by 10-fold Ad5-N re-exposure or sublethal infection of mouse-adapted SARS-CoV-2. By contrast, this procedure led to aggravated lung pathology with more necroptotic CD3+ T cells and Ly6G+ granulocytes, which was associated with the accumulation of IFN-γ-expressing antigen-experienced CD4+ and CD8+ T cells. These findings pre-caution the clinical application of this vaccination procedure. Furthermore, our data suggest that excessive host adaptive immune responses against N protein contributes to COVID-19 pathogenesis.


Assuntos
Adenovírus Humanos , COVID-19 , Humanos , Feminino , Animais , Camundongos , SARS-CoV-2/genética , Linfócitos T CD8-Positivos , Vacinação , Camundongos Endogâmicos BALB C
8.
Front Microbiol ; 14: 1175188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350787

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is responsible for the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the host, and the gastrointestinal tract is a potential infection site as this receptor is expressed on it. Multiple studies have indicated that an increasing number of COVID-19 patients presented with gastrointestinal symptoms that are highly associated with disease severity. Moreover, emerging evidence has demonstrated that alterations in the gut immune microenvironment induced by intestinal SARS-CoV-2 infection can regulate respiratory symptoms. Therefore, targeting the intestines may be a candidate therapeutic strategy in patients with COVID-19; however, no mouse model can serve as an appropriate infection model for the development of fatal pneumonia while mimicking intestinal infection. In this study, a novel human ACE2 knock-in (KI) mouse model (or hACE2-KI) was systemically compared with the popular K18-hACE2 mice; it showed differences in the distribution of lung and intestinal infections and pathophysiological characteristics. These newly generated hACE2-KI mice were susceptible to intranasal infection with SARS-CoV-2, and not only developed mild to severe lung injury, but also acquired intestinal infection. Consequently, this model can be a useful tool for studying intestinal SARS-CoV-2 infection and developing effective therapeutic strategies.

9.
PNAS Nexus ; 2(4): pgad079, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37065616

RESUMO

Acinetobacter baumannii has been listed as one of the most critical pathogens in nosocomial infections; however, the key genes and mechanisms to adapt to the host microenvironment lack in-depth understanding. In this study, a total of 76 isolates (from 8 to 12 isolates per patient, spanning 128 to 188 days) were longitudinally collected from eight patients to investigate the within-host evolution of A. baumannii. A total of 70 within-host mutations were identified, 80% of which were nonsynonymous, indicating the important role of positive selection. Several evolutionary strategies of A. baumannii to increase its potential to adapt to the host microenvironment were identified, including hypermutation and recombination. Six genes were mutated in isolates from two or more patients, including two TonB-dependent receptor genes (bauA and BJAB07104_RS00665). In particular, the siderophore receptor gene bauA was mutated in multiple isolates from four patients with three MLST types, and all mutations were at amino acid 391 in ligand-binding sites. With 391T or 391A, BauA was more strongly bound to siderophores, which promoted the iron-absorption activity of A. baumannii at acidic or neutral pH, respectively. Through the A/T mutation at site 391 of BauA, A. baumannii displayed two reversible phases to adapt to distinct pH microenvironments. In conclusion, we demonstrated the comprehensive within-host evolutionary dynamics of A. baumannii, and discovered a key mutation of BauA site 391 as a genetic switch to adapt to different pH values, which may represent a model in the pathogen evolutionary adaption of the host microenvironment.

10.
Clin Transl Med ; 12(9): e1016, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103390

RESUMO

BACKGROUND: To determine an appropriate dose of, and immunization schedule for, a vaccine SCoK against COVID-19 for an efficacy study; herein, we conducted randomized controlled trials to assess the immunogenicity and safety of this vaccine in adults. METHODS: These randomized, double-blind, placebo-controlled phase 1 and 2 trials of vaccine SCoK were conducted in Binhai District, Yan City, Jiangsu Province, China. Younger and older adult participants in phase 1 and 2 trials were sequentially recruited into different groups to be intramuscularly administered 20 or 40 µg vaccine SCoK or placebo. Participants were enrolled into our phase 1 and 2 studies to receive vaccine or placebo. RESULTS: No serious vaccine-related adverse events were observed in either trial. In both trials, local and systemic adverse reactions were absent or mild in most participants. In our phase 1 and 2 studies, the vaccine induced significantly increased neutralizing antibody responses to pseudovirus and live SARS-CoV-2. The vaccine induced significant neutralizing antibody responses to live SARS-CoV-2 on day 14 after the last immunization, with NT50s of 80.45 and 92.46 in participants receiving 20 and 40 µg doses, respectively; the seroconversion rates were 95.83% and 100%. The vaccine SCoK showed a similar safety and immunogenicity profiles in both younger participants and older participants. The vaccine showed better immunogenicity in phase 2 than in phase 1 clinical trial. Additionally, the incidence of adverse reactions decreased significantly in phase 2 clinical trial. The vaccine SCoK was well tolerated and immunogenic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2
11.
ACS Sens ; 6(8): 2911-2919, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282892

RESUMO

Sensitive, selective, rapid, and label-free detection of pathogenic bacteria with high generality is of great importance for clinical diagnosis, biosecurity, and public health. However, most traditional approaches, such as microbial cultures, are time-consuming and laborious. To circumvent these problems, surface-enhanced Raman spectroscopy (SERS) appears to be a powerful technique to characterize bacteria at the single-cell level. Here, by SERS, we report a strategy for the rapid and specific detection of 22 strains of common pathogenic bacteria. A novel and high-quality silver nanorod SERS substrate, prepared by the facile interface self-assembly method, was utilized to acquire the chemical fingerprint information of pathogens with improved sensitivity. We also applied the mathematical analysis methods, such as the t-test and receiver operating characteristic method, to determine the Raman features of these 22 strains and demonstrate the clear identification of most bacteria (20 strains) from the rest and also the reliability of this SERS sensor. This rapid and specific strategy for wide-range bacterial detection offers significant advantages over existing approaches and sets the base for automated and onsite detection of pathogenic bacteria in a complex real-life situation.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Bactérias , Reprodutibilidade dos Testes , Prata
12.
Adv Mater ; 33(40): e2102528, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396603

RESUMO

Dendritic cell (DC) vaccines are used for cancer and infectious diseases, albeit with limited efficacy. Modulating the formation of DC-T-cell synapses may greatly increase their efficacy. The effects of graphene oxide (GO) nanosheets on DCs and DC-T-cell synapse formation are evaluated. In particular, size-dependent interactions are observed between GO nanosheets and DCs. GOs with diameters of >1 µm (L-GOs) demonstrate strong adherence to the DC surface, inducing cytoskeletal reorganization via the RhoA-ROCK-MLC pathway, while relatively small GOs (≈500 nm) are predominantly internalized by DCs. Furthermore, L-GO treatment enhances DC-T-cell synapse formation via cytoskeleton-dependent membrane positioning of integrin ICAM-1. L-GO acts as a "nanozipper," facilitating the aggregation of DC-T-cell clusters to produce a stable microenvironment for T cell activation. Importantly, L-GO-adjuvanted DCs promote robust cytotoxic T cell immune responses against SARS-CoV-2 spike 1, leading to >99.7% viral RNA clearance in mice infected with a clinically isolated SARS-CoV-2 strain. These findings highlight the potential value of nanomaterials as DC vaccine adjuvants for modulating DC-T-cell synapse formation and provide a basis for the development of effective COVID-19 vaccines.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Células Dendríticas/imunologia , Grafite/uso terapêutico , Nanoestruturas/uso terapêutico , Adjuvantes Imunológicos/química , Animais , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Células Dendríticas/efeitos dos fármacos , Grafite/química , Humanos , Camundongos , Nanoestruturas/química , SARS-CoV-2/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
13.
Nat Commun ; 12(1): 5654, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580297

RESUMO

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação/genética , COVID-19/mortalidade , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Ligação Proteica/genética , Domínios Proteicos/genética , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética
14.
Front Microbiol ; 11: 260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153544

RESUMO

Accumulating studies have shown that long non-coding RNAs (lncRNAs) modulate multiple biological processes, including immune response. However, the underlying mechanisms of lncRNAs regulating host antiviral immune response are not well elucidated. In this study, we report that analysis of the existing dataset transcriptome of blood immune cells of patients with influenza A virus (IAV) infection and after recovery (GSE108807) identified a novel lncRNA, termed as IVRPIE (Inhibiting IAV Replication by Promoting IFN and ISGs Expression), was involved in antiviral innate immunity. In vitro studies showed that IVRPIE was significantly upregulated in A549 cells after IAV infection. Gain-and-loss of function experiments displayed that enforced IVRPIE expression significantly inhibited IAV replication in A549 cells. Conversely, silencing IVRPIE promoted IAV replication. Furthermore, IVRPIE positively regulates the transcription of interferon ß1 and several critical interferon-stimulated genes (ISGs), including IRF1, IFIT1, IFIT3, Mx1, ISG15, and IFI44L, by affecting histone modification of these genes. In addition, hnRNP U was identified as an interaction partner for IVRPIE. Taken together, our findings suggested that a novel lncRNA IVRPIE is a critical regulator of host antiviral response.

15.
Science ; 369(6511): 1603-1607, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32732280

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Camundongos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Administração Intranasal , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunogenicidade da Vacina , Pulmão/virologia , Doenças Pulmonares Intersticiais/virologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Virulência/genética
16.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485164

RESUMO

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral , Envelhecimento , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/virologia , COVID-19 , Sistemas CRISPR-Cas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/sangue , Técnicas de Introdução de Genes , Pulmão/patologia , Pulmão/virologia , Doenças Pulmonares Intersticiais/patologia , Nariz/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/análise , SARS-CoV-2 , Estômago/virologia , Traqueia/virologia , Carga Viral , Replicação Viral
17.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277466

RESUMO

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Assuntos
Basigina/genética , COVID-19/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Basigina/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Pandemias , Ligação Proteica/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
18.
Vaccine ; 37(29): 3810-3819, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31147275

RESUMO

Staphylococcal enterotoxin B (SEB) produced by the Staphylococcus aureus bacteriumis most commonly associated with food poisoning and is known to also cause toxic shock syndrome. Currently, no approved vaccine or specific drug is available to treat SEB intoxication. In this study, we fabricated dissolving microneedles (MNs) loaded with recombinant SEB (rSEB) protein, and evaluated its characteristics, including dissolution profile, protein particle size, insertion depth, antigen retention time in vivo, and skin irritation. Our results showed that rSEB protein-loaded dissolving MNs made of chondroitin sulfate (2%) and trehalose (0.8%) could easily penetrate into the mouse skin within 5 min. The rSEB particle size was unchanged before and after MN fabrication. The skin penetration depth of the MNs was 260 µm. Moreover, the MNs also significantly extended the antigen retention time in vivo. rSEB protein-loaded dissolving MNs also triggered slight erythema at the beginning of administration, but this erythema disappeared within a few hours. More importantly, we investigated the immunogenicity and protective efficacy of rSEB protein-loaded dissolving MNs. Challenge studies in mice revealed that mice in full-dose MN group had a high level of SEB specific antibody response thatprovided100% protection against a lethal SEB toxin challenge. However, there was only 60% protection observed in mice that were in the half-dose MN (dose sparing) group. We also determined the pathological alterations in the tissues of the immunized mice. Taken together, these dissolving MNs may present a promising transcutaneous immunization strategy for treating SEB intoxication.


Assuntos
Enterotoxinas/administração & dosagem , Imunização/métodos , Microinjeções/instrumentação , Agulhas , Infecções Estafilocócicas/prevenção & controle , Administração Cutânea , Animais , Anticorpos Antibacterianos/sangue , Enterotoxinas/genética , Enterotoxinas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Pele/efeitos dos fármacos , Pele/patologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Suínos
19.
Antiviral Res ; 153: 78-84, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501624

RESUMO

Human adenoviruses (HAdVs) are prevalent in pediatric and adult patients with severe acute respiratory disease (ARD). To date, there have been no widely used HAdV vaccines available. In this report, we developed a cold-adapted attenuated influenza virus, termed rg HAdV-Flu ca, carrying epitopes from HAdV hexon protein in the backbone of the ca influenza vaccine neuraminidase (NA) gene using reverse genetics. Rg HAdV-Flu ca virus exhibited a cold-adapted (ca) phenotype, and its morphological characteristics were observed using electron microscopy. Moreover, BALB/c mice were immunized intranasally (i.n.) with 105, 106 or 107 TCID50 rg HAdV-Flu ca. Results showed a specific, robust antibody response against influenza and HAdV in a dose-dependent manner. More importantly, potent humoral, mucosal and cellular immune responses protected against subsequent wild-type HAdV-3 or HAdV-7 challenges, as determined by a significant decrease in viral titers and a noticeable alleviation of histopathological alterations in the lung tissue of challenged mice. These findings demonstrate that rg HAdV-Flu ca warrants attention as a potential vaccine candidate against HAdV infection.


Assuntos
Adenovírus Humanos/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Adenovírus Humanos/genética , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Epitopos/genética , Epitopos/imunologia , Imunidade Celular , Imunidade nas Mucosas , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/prevenção & controle , Genética Reversa , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Vírion/ultraestrutura , Viroses
20.
Hum Vaccin Immunother ; 14(3): 623-629, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29400997

RESUMO

Vaccination is the most effective method of preventing the spread of the influenza virus. However, the traditional intramuscular (IM) immunization causes fear, pain, and cross infection. In contrast, needle-free (NF) immunization is quick and easy for medical personnel and painless and safe for patients. In this study, we assessed the safety and protective efficacy of NF intradermal (ID) immunization with the influenza H7N9 split vaccine (Anhui H7N9/PR8). A preliminary safety evaluation showed that ID immunization with 15 µg of the H7N9 influenza vaccine was not toxic in rats. Moreover, the antigen was metabolized more rapidly after ID than after IM immunization, as determined by in vivo imaging, and ID immunization accelerated the generation of a specific immune response. Additionally, ID immunization with a 20% dose of the H7N9 split vaccine Anhui H7N9/PR8 offered complete protection against lethal challenge by the live H7N9 virus. Taken together, our findings suggest that NF ID immunization with the H7N9 influenza vaccine induces effective protection, has a good safety profile, requires little antigen, and elicits an immune response more rapidly than does IM immunization. This approach may be used to improve the control of influenza H7N9 outbreaks.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Imunização/métodos , Injeções Intradérmicas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA