Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Chem Inf Model ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885636

RESUMO

Ferroptosis is an iron-dependent programmed cell death characterized by lipid peroxidation that is linked to the pathophysiological processes in many diseases, such as neurodegenerative diseases, cancers, ischemia-reperfusion injuries, and organ damages. Many proteins are associated with ferroptosis signal transduction pathways. Novel chemical compounds are demanded to explore and regulate these pathways. Therefore, a ferroptosis ligand database, which holds relations among chemical structures, targets, bioactivities, and diseases, is needed for discovering and designing new ferroptosis regulators. This work reports FerroLigandDB, a manually curated database for small-molecular ferroptosis regulators. The database comprises 466 ferroptosis inducer entries (with 380 unique molecular structures) and 539 ferroptosis inhibitor entries (with 468 unique molecular structures) (note: one compound can be recorded as multiple entries due to the different assays). Each ferroptosis ligand entry is detailed with compound IDs, structure attributes, bioactivity values, test objects, target information, associated diseases, and references. The fields in the FerroLigandDB database implicitly contain relationships among chemical structures, bioactivities, targets, and diseases. Thus, FerroLigandDB is a comprehensive resource for scientists to design and discover novel ferroptosis regulators. The user interface of FerroLigandDB is implemented with query features and data visualization facilities. With compound identifiers, the compounds are linked to the records of other chemoinformatics databases (such as PubChem and SciFinder). The FerroLigandDB database is freely accessible at http://ferr.gulab.org.cn/.

2.
J Chem Inf Model ; 64(9): 3744-3755, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662925

RESUMO

Generating the three-dimensional (3D) structure of small molecules is crucial in both structure- and ligand-based drug design. Structure-based drug design needs bioactive conformations of compounds for lead identification and optimization. Ligand-based drug design techniques, such as 3D shape similarity search, 3D pharmacophore model, 3D-QSAR, etc., all require high-quality small-molecule ligand conformations to obtain reliable results. Although predicting a small molecular bioactive conformer requires information from the receptor, a crystal structure of the molecule is a proper approximation to its bioactive conformer in a specific receptor because the binding pose of a small molecule in its receptor's binding pockets should be energetically close to the crystal structures. This study presents a de novo small molecular structure predictor (dMXP) with graph attention networks based on crystal data derived from the Cambridge Structural Database (CSD) combined with molecular electrostatic information calculated by density-functional theory (DFT). Two featuring strategies (topological and atomic partial change features) were employed to explore the relation between these features and the 3D crystal structure of a small molecule. These features were then assembled to construct the holistic 3D crystal structure of a molecule. Molecular graphs were encoded using a graph attention mechanism to deal with the issues of the inconsistencies of local substructures contributing to the entire molecular structure. The root-mean-square deviation (RMSDs) of approximately 80% dMXP predicted structures and the native binding poses within receptors are less than 2.0 Å.


Assuntos
Modelos Moleculares , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química , Ligantes , Desenho de Fármacos , Eletricidade Estática , Relação Quantitativa Estrutura-Atividade
3.
Bioorg Chem ; 146: 107261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460336

RESUMO

With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 µM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.


Assuntos
Ferroptose , Fármacos Neuroprotetores , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Estados Unidos , Humanos
4.
Bioorg Chem ; 145: 107253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452588

RESUMO

Phytochemical study on Euphorbia milii, a common ornamental plant, resulted in the identification of thirteen new ent-rosane diterpenoids (1-13), three new ent-atisane diterpenoids (14-16), and a known ent-rosane (17). Their structures were delineated using spectroscopic data, quantum chemical calculations, and X-ray diffraction experiments. Euphomilone F (1) represented a rare ent-rosane-type diterpenoid with a 5/7/6 skeleton. Euphoainoid G (8) was a rare rosane diterpenic acid. Compounds 9 and 10 carried infrequent tetrahydrofuran rings, and compounds 11-13 was 18-nor-ent-rosane diterpenoids. All isolates were evaluated for their inhibitory effects on RANKL-induced osteoclasts. Notably, compounds with aromatic ester groups (2-7) showed promising activities (IC50 < 10 µM), underscoring the significance of acylated A-ring moieties in the ent-rosane skeleton for anti-osteoclastogenesis. Thirteen synthetic derivatives were obtained through esterification of 17. Of these, compound 27 exhibited remarkable improvement, with an IC50 of 0.8 µM, more than a 12-fold increase in potency compared to the parent compound 17 (IC50 > 10 µM). This work presents a series of new ent-rosane diterpenoids with potential antiosteoporosis agents.


Assuntos
Diterpenos , Euphorbia , Osteogênese , Euphorbia/química , Extratos Vegetais/química , Osteoclastos , Diterpenos/farmacologia , Diterpenos/química , Estrutura Molecular
5.
Mol Ther ; 31(10): 3015-3033, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641404

RESUMO

Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-ß1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-ß receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-ß/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-ß receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Bleomicina , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/antagonistas & inibidores , Vimentina/metabolismo
6.
Nucleic Acids Res ; 50(8): 4755-4768, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474479

RESUMO

Methionyl-tRNA synthetase (MetRS) charges tRNAMet with l-methionine (L-Met) to decode the ATG codon for protein translation, making it indispensable for all cellular lives. Many gram-positive bacteria use a type 1 MetRS (MetRS1), which is considered a promising antimicrobial drug target due to its low sequence identity with human cytosolic MetRS (HcMetRS, which belongs to MetRS2). Here, we report crystal structures of a representative MetRS1 from Staphylococcus aureus (SaMetRS) in its apo and substrate-binding forms. The connecting peptide (CP) domain of SaMetRS differs from HcMetRS in structural organization and dynamic movement. We screened 1049 chemical fragments against SaMetRS preincubated with or without substrate ATP, and ten hits were identified. Four cocrystal structures revealed that the fragments bound to either the L-Met binding site or an auxiliary pocket near the tRNA CCA end binding site of SaMetRS. Interestingly, fragment binding was enhanced by ATP in most cases, suggesting a potential ATP-assisted ligand binding mechanism in MetRS1. Moreover, co-binding with ATP was also observed in our cocrystal structure of SaMetRS with a class of newly reported inhibitors that simultaneously occupied the auxiliary pocket, tRNA site and L-Met site. Our findings will inspire the development of new MetRS1 inhibitors for fighting microbial infections.


Assuntos
Metionina tRNA Ligase , Humanos , Metionina tRNA Ligase/química , Ligantes , Sítios de Ligação , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Metionina/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Chem Biodivers ; 21(4): e202400244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426640

RESUMO

Five new compounds (1, 2, 7, 12, and 16), along with fifteen known ones, were isolated from Ajuga lupulina Maxim. Their structures were revealed by analysing spectroscopic data (MS, NMR), and experimental and calculated ECD spectra was used to deduce the absolute configuration. Compound 16, with eight carbon atoms, was firstly isolated from the nature. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis in HT22 mouse hippocampal neuronal cells. Among them, the abietane-type diterpenoids (7-11) significantly inhibited ferroptosis with EC50 values of 0.83 µM, 2.05 µM, 0.96 µM, 1.47 µM, and 1.19 µM, respectively.


Assuntos
Ajuga , Ferroptose , Animais , Camundongos , Estrutura Molecular , Ajuga/química , Abietanos/química , Espectroscopia de Ressonância Magnética
8.
J Nat Prod ; 86(8): 2006-2021, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566645

RESUMO

Twelve new neo-clerodane diterpenoids, eight undescribed methoxy/ethoxy acetal analogues, and one new nor-iridane monoterpenoid were isolated from Ajuga campylantha. Their structures were elucidated using a combination of spectroscopic data, quantum chemical calculations, and X-ray crystallography. This research reveals the distinctive structural features of A. campylantha diterpenes, including distinct C rings and 4,18-double bonds, distinguishing them from diterpenes of other plants in the Ajuga genus. Compound 2 represents the first example of a 19(5→6)-abeo-clerodane formed through a Wagner-Meerwein rearrangement. The isolated compounds were assessed for their neuroprotective effects against RSL3-induced ferroptosis in HT22 cells and LPS-induced neuroinflammation in BV-2 cells. Notably, compound 7 inhibits ferroptosis (EC50 = 10 µM) with a potentially new mechanism of action. The preliminary structure-activity relationship studies revealed that the furan-clerodane diterpenoids possess potential ferroptosis inhibitory activity, while the lactone-clerodanes do not. This study represents the first report of furan-containing clerodanes within the Ajuga genus, providing fresh insights into the phytochemistry and pharmacological potential of A. campylantha.


Assuntos
Ajuga , Diterpenos Clerodânicos , Ferroptose , Fármacos Neuroprotetores , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Ajuga/química , Doenças Neuroinflamatórias , Estrutura Molecular
9.
Bioorg Chem ; 133: 106393, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731296

RESUMO

Ferroptosis is a new type of cell death associated with many human diseases. It is a new strategy to discover ferroptosis inhibitors for the treatment of ferroptosis-related diseases. Here the FDA-approved drug library containing 1160 molecules was screened for ferroptosis inhibitors in RSL3-induced HT22 mouse hippocampal neuronal cells. As a result, olanzapine showed potent ferroptosis inhibitory activity (EC50 = 1.18 µM). Structural optimization and the structure-activity relationships (SARs) analysis led to the synthesis of 41 new derivatives (4-44) and one known compound 45. Comparing with olanzapine, its derivative 36 showed nearly sixteen-folds improved ferroptosis inhibition and low cytotoxicity (EC50 = 0.074 µM, CC50 = 18.8 µM). Further mechanistic studies revealed that compound 36 specifically inhibited ferroptosis by its antioxidative ability. This work demonstrates that olanzapine protected RSL3-induced ferroptosis in HT22 cell, and its derivative 36 having nanomolar ferroptosis inhibitory activity merit to be developed for drugs against ferroptosis-related neurological diseases.


Assuntos
Ferroptose , Camundongos , Humanos , Animais , Olanzapina/farmacologia , Morte Celular , Antioxidantes/farmacologia
10.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34390350

RESUMO

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Assuntos
Domínio Catalítico/genética , Escherichia coli/genética , Glicina-tRNA Ligase/genética , RNA de Transferência de Glicina/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Glicina/química , Modelos Moleculares , RNA de Transferência de Glicina/genética
11.
BMC Med Inform Decis Mak ; 23(1): 184, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715189

RESUMO

OBJECTIVE: To develop a nomogram for predicting the occurrence of sepsis-associated delirium (SAD). MATERIALS AND METHODS: Data from a total of 642 patients were retrieved from the Medical Information Mart for Intensive Care (MIMIC III) database to build a prediction model. Multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of SAD. The performance of the nomogram was assessed in terms of discrimination and calibration by bootstrapping with 1000 resamples. RESULTS: Multivariate logistic regression identified 4 independent predictors for patients with SAD, including Sepsis-related Organ Failure Assessment(SOFA) (p = 0.004; OR: 1.131; 95% CI 1.040 to 1.231), mechanical ventilation (P < 0.001; OR: 3.710; 95% CI 2.452 to 5.676), phosphate (P = 0.047; OR: 1.165; 95% CI 1.003 to 1.358), and lactate (P = 0.023; OR: 1.135; 95% CI 1.021 to 1.270) within 24 h of intensive care unit (ICU) admission. The area under the curve (AUC) of the predictive model was 0.742 in the training set and 0.713 in the validation set. The Hosmer - Lemeshow test showed that the model was a good fit (p = 0.471). The calibration curve of the predictive model was close to the ideal curve in both the training and validation sets. The DCA curve also showed that the predictive nomogram was clinically useful. CONCLUSION: We constructed a nomogram for the personalized prediction of delirium in sepsis patients, which had satisfactory performance and clinical utility and thus could help clinicians identify patients with SAD in a timely manner, perform early intervention, and improve their neurological outcomes.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Humanos , Estudos Retrospectivos , Nomogramas , Sepse/complicações , Sepse/diagnóstico , Ácido Láctico
12.
FASEB J ; 35(5): e21575, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826776

RESUMO

Staphylopine (StP) and other nicotianamine-like metallophores are crucial for many pathogens to acquire the transition metals from hosts during invasion. CntL from Staphylococcus aureus (SaCntL) catalyzes the condensation of the 2-aminobutyrate (Ab) moiety of S-adenosylmethionine (SAM) with D-histidine in the biosynthesis of StP. Here, we report the crystal structures of SaCntL in complex with either SAM or two products. The structure of SaCntL consists of an N-terminal four-helix bundle (holding catalytic residue E84) and a C-terminal Rossmann fold (binding the substrates). The sequence connecting the N- and C-terminal domains (N-C linker) in SaCntL was found to undergo conformational alternation between open and closed states. Our structural and biochemical analyses suggested that this intrinsically dynamic interdomain linker forms an additional structural module that plays essential roles in ligand diffusion, recognition, and catalysis. We confirmed that SaCntL stereoselectively carries out the catalysis of D-His but not its enantiomer, L-His, and we found that the N-C linker and active site of SaCntL could accommodate both enantiomers. SaCntL is likely able to bind L-His without catalysis, and as a result, L-His could show inhibitory effects toward SaCntL. These findings provide critical structural and mechanistic insights into CntL, which facilitates a better understanding of the biosynthesis of nicotianamine-like metallophores and the discovery of inhibitors of this process.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Imidazóis/metabolismo , Staphylococcus aureus/enzimologia , Transferases/química , Transferases/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Proteica
13.
J Nat Prod ; 85(7): 1808-1815, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35796002

RESUMO

Two new 3,4-epoxy group-containing abietane diterpenoids (1 and 2), together with five known diterpenoids (3-7), were isolated from Ajuga decumbens. Their structures were elucidated by spectroscopic data analysis, NMR calculations, and X-ray diffraction experiments. The structures of two known abietane diterpenoids were revised based on NMR calculations and X-ray diffraction data. Notably, compound 4 specifically inhibited RSL3-induced ferroptosis with an EC50 of 56 nM by antioxidation. Moreover, 4 significantly decreased RSL3-induced lipid and cytosolic ROS accumulation and ferroptosis marker gene PTGS2 mRNA expression. This work reports the most potent natural inhibitor against ferroptosis found so far.


Assuntos
Ajuga , Diterpenos , Ferroptose , Abietanos/química , Abietanos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
14.
J Nat Prod ; 85(4): 866-877, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35324175

RESUMO

Twenty-two sesquiterpenoids (1-22) and 11 polyacetylenes (23-33) were obtained from the rhizomes of Atractylodes lancea. Among them, 11 compounds (1-5, 11, 12, 23, 24, 30, and 31) are new. The scaffolds represented by the isolates of sesquiterpenoids were found to be varied and included two rare rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton, eight spirovetivanes, three guaianes, eight eudesmanes, and one eremophilane. Their planar structures and relative configurations were elucidated by UV, IR, 1D and 2D NMR, and HRESIMS data analysis. The absolute configurations of the new sesquiterpenoids were determined using X-ray diffraction analysis and by comparison of the calculated and experimental electronic circular dichroism and optical rotation data, as well as chemical transformations. All the isolated compounds (1-33) were evaluated for their activity against RANKL-induced osteoclastogenesis in bone marrow macrophages. Two polyacetylene-type compounds, 25 and 32, showed potent activity with IC50 values of 1.3 and 0.64 µM, respectively. Rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton are reported herein from the genus Atractylodes for the first time. Polyacetylenes were demonstrated as the main active constituents of A. lancea with osteoclastogenesis inhibitory activity.


Assuntos
Atractylodes , Sesquiterpenos , Atractylodes/química , Estrutura Molecular , Osteogênese , Poli-Inos/química , Poli-Inos/farmacologia , Rizoma/química , Sesquiterpenos/química
15.
Bioorg Chem ; 123: 105802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436756

RESUMO

Colorectal cancer (CRC) is ranked the third driving reason for cancer death in the world. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, necessitating new effective treatment strategies. In our previous study, we synthesized compound5othat showed high anticancer potential with a 6-acrylic phenethyl ester-2-pyranone backbone, but its mechanism of action (MOA) is not understood. To articulate the MOA of 5o against colon cancer, we evaluated the anti-cancer effect of compound5oon CRC cells by cell proliferation assays. The MOA of5owas explored through cell cycle assays and apoptosis assays. The target of 5o was identified by molecular dynamic assays, ATPase assays, and surface plasmon resonance (SPR) analysis. We discovered 5o, a compound capable of inhibiting CRC cell proliferation with 1/25 folds in IC50 values compared with NCM460 cells (normal human colonic epithelial cell line). 5o induces cell apoptosis in a dose-dependent manner through PI3K/Akt/FoxO1 and NF-κB signaling pathways. In addition, 5o arrests cell cycle at G2/M by regulating MAPKs (ERK1/2 and p38) pathway. We further confirmed that 5o inhibits ATPase activity of GRP94 (Glucose-regulated protein 94) with the IC50 1.45 ± 0.06 µM. Compound 5o inhibits GRP94 to trigger regulation of PI3K/Akt and MAPKs pathways. This study reveals that 5o is a promising therapeutic agent against CRC as a novel GRP94 inhibition.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Adenosina Trifosfatases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteínas de Choque Térmico HSP70 , Humanos , Proteínas de Membrana , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pironas
16.
Bioorg Chem ; 119: 105511, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847428

RESUMO

Euphoesulatin A (Eup A), a new jatrophane diterpenoid isolated from the Euphorbia esula L. (Euphorbiaceae), was reported to inhibit RANKL-induced osteoclastogenesis. However, the underlying mechanism and the effect in osteoporosis mouse model are still unclear. This study is the first to demonstrate that Eup A inhibits osteoclastogenesis in vitro and in vivo. Mechanistic analysis suggested that Eup A (3, 6, 12 µM) dose-dependently inhibited osteoclastogenesis by down-regulating the activation of NFATc1 and NF-κB and MAPKs signal pathways. Moreover, Eup A (10 mg/kg) significantly prevented bone loss in ovariectomized mice. This work provides in vitro and in vivo evidence that Eup A could be a potential candidate for the development of anti-osteoporosis agents.


Assuntos
Euphorbiaceae/química , Osteoclastos/efeitos dos fármacos , Osteoporose/prevenção & controle , Ligante RANK/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NF-kappa B/metabolismo , Osteoporose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
17.
Chem Biodivers ; 19(4): e202101028, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247295

RESUMO

One new sesquiterpenoid, 10-epi-lochmolin F (1), together with 13 known sesquiterpenoids, was isolated from the roots of Croton crassifolius. The structures of these compounds were confirmed by UV, IR, MS, and NMR spectroscopic analysis. The absolute configuration of compound 1 was elucidated by analysis of X-ray crystallography. All the 14 isolated sesquiterpenoids were screened for their inhibitory effects on ferroptosis in HT-22 cells. Two compounds 4 and 7 showed certain inhibitory effects against RSL3-induced ferroptosis with EC50 values of 10.8±2.3 µM and 15.5±0.5 µM, respectively. Here we firstly reported the sesquiterpenoids from C. crassifolius showing inhibitory effect on ferroptosis.


Assuntos
Croton , Ferroptose , Sesquiterpenos , Croton/química , Cristalografia por Raios X , Estrutura Molecular , Raízes de Plantas/química , Sesquiterpenos/química
18.
J Biol Chem ; 295(21): 7431-7441, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32312752

RESUMO

Lytic replication of Epstein-Barr virus (EBV) is not only essential for its cell-to-cell spread and host-to-host transmission, but it also contributes to EBV-induced oncogenesis. Thus, blocking EBV lytic replication could be a strategy for managing EBV-associated diseases. Previously, we identified a series of natural lignans isolated from the roots of Saururus chinensis (Asian lizard's tail) that efficiently block EBV lytic replication and virion production with low cytotoxicity. In this study, we attempted to elucidate the molecular mechanism by which these lignans inhibit EBV lytic replication. We found that a representative compound, CSC27 (manassantin B), inhibits EBV lytic replication by suppressing the expression of EBV immediate-early gene BZLF1 via disruption of AP-1 signal transduction. Further analysis revealed that manassantin B specifically blocks the mammalian target of rapamycin complex 2 (mTORC2)-mediated phosphorylation of AKT Ser/Thr protein kinase at Ser-473 and protein kinase Cα (PKCα) at Ser-657. Using phosphoinositide 3-kinase-AKT-specific inhibitors for kinase mapping and shRNA-mediated gene silencing, we validated that manassantin B abrogates EBV lytic replication by inhibiting mTORC2 activity and thereby blocking the mTORC2-PKC/AKT-signaling pathway. These results suggest that mTORC2 may have utility as an antiviral drug target against EBV infections and also reveal that manassantin B has potential therapeutic value for managing cancers that depend on mTORC2 signaling for survival.


Assuntos
Furanos/farmacologia , Herpesvirus Humano 4/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo
19.
J Med Virol ; 93(6): 3974-3979, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32869863

RESUMO

Norovirus-like particle (VLP) vaccine is promising against human norovirus infection. Unfortunately, genetic diversity of norovirus hindered the development of this vaccine. In this study, the immunogenicity of norovirus VLPs induced by the endemic GII.4 and the epidemic GII.17 genotypes, and the cross-reactivity between them as well as GI.1 and GII.3 VLPs were evaluated in mice by using serum IgG and histo-blood group antigen (HBGA) blocking antibodies as index. Results showed well immunogenicity of both GII.4 and GII.17 VLPs in mice. Serum IgG GMT (Geometric Mean Titer) were 3.63 (GII.4) and 3.88 (GII.17) respectively, and sustained to the 15th week. The HBGA blocking antibodies were 130 (GII.4) and 360 (GII.17) respectively at the end of the 4th week. Additionally, there was a dramatically statistical difference found in the cross-reactivity within genogroup (GII.3, GII.4 and GII.17) (p < .001), and also showed similar difference between genogroups (GI.1 vs. GII.3, GII.4 and GII.17) (p < .001). Summarized the pPICZa pichi pichia expression system showed a potential to be the alternative for expression of norovirus VLPs in secretion form, and the little cross-reactivity found between the endemic strain and the epidemic strain provides an evident for the consideration of selecting candidates of norovirus vaccine strains.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Caliciviridae/imunologia , Reações Cruzadas/imunologia , Gastroenterite/virologia , Variação Genética/imunologia , Genótipo , Norovirus/genética , Norovirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Reações Cruzadas/genética , Doenças Endêmicas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/normas
20.
J Nat Prod ; 84(10): 2727-2737, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34596414

RESUMO

Nine new highly oxygenated 3,5-dimethylorsellinic acid-derived meroterpenoids, talaromynoids A-I (1-9), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated by HRMS, NMR, single-crystal X-ray diffraction analysis, and electronic circular dichroism calculations. Compounds 1 and 7-9 possessed unprecedented 5/7/6/5/6/6, 6/7/6/6/6/5, 6/7/6/5/6/5/4, and 7/6/5/6/5/4 polycyclic systems, respectively. Biologically, compound 5 showed selective inhibitory activity against phosphatase CDC25B with an IC50 value of 13 µM. Moreover, 7-9 and 12 exhibited the activity of reducing triglyceride in 3T3-L1 adipocytes in a dosage-dependent manner.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Talaromyces/química , Terpenos/farmacologia , Células 3T3-L1 , Animais , Organismos Aquáticos/química , China , Humanos , Camundongos , Estrutura Molecular , Oxigênio , Terpenos/isolamento & purificação , Triglicerídeos/metabolismo , Fosfatases cdc25/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA