Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Brain Behav Immun ; 81: 630-645, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351185

RESUMO

Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia. Mouse and rat models for PD were prepared by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or striatal injection of 1-methyl-4-phenylpyridinium (MPP+), respectively. Both in MPTP-treated mice and MPP+-treated rats, blood-brain barrier (BBB) was disrupted and IL-17A level increased in the SN but not in cortex. Effector T (Teff) cells that were adoptively transferred via tail veins infiltrated into the brain of PD mice but not into that of normal mice. The Teff cell transfer aggravated nigrostriatal dopaminergic neurodegeneration, microglial activation and motor impairment. Contrarily, IL-17A deficiency alleviated BBB disruption, dopaminergic neurodegeneration, microglial activation and motor impairment. Anti-IL-17A-neutralizing antibody that was injected into lateral cerebral ventricle in PD rats ameliorated the manifestations mentioned above. IL-17A activated microglia but did not directly affect dopaminergic neuronal survival in vitro. IL-17A exacerbated dopaminergic neuronal loss only in the presence of microglia, and silencing IL-17A receptor gene in microglia abolished the IL-17A effect. IL-17A-treated microglial medium that contained higher concentration of tumor necrosis factor (TNF)-α facilitated dopaminergic neuronal death. Further, TNF-α-neutralizing antibody attenuated MPP+-induced neurotoxicity. The findings suggest that IL-17A accelerates neurodegeneration in PD depending on microglial activation and at least partly TNF-α release.


Assuntos
Interleucina-17/imunologia , Microglia/imunologia , Doença de Parkinson/imunologia , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Morte Celular/imunologia , Corpo Estriado/imunologia , Modelos Animais de Doenças , Dopamina/imunologia , Neurônios Dopaminérgicos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neuroimunomodulação/imunologia , Ratos , Ratos Sprague-Dawley , Substância Negra/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Pharmacol Res ; 137: 64-75, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30248460

RESUMO

Excess fructose consumption causes high prevalence of metabolic syndrome and inflammatory liver diseases. The aim of the current study was to investigate the therapeutic effects and underlying molecular mechanisms of curcumin and allopurinol in high fructose-induced hepatic inflammation. Male Sprague-Dawley rats were supplied with standard rat chow and drinking water containing 10% (w/v) fructose for consecutive 12 weeks. Curcumin (15, 30 and 60 mg/kg) and allopurinol (5 mg/kg) were administered to rats via oral gavage daily from Week 7 to 12. For in vitro experiments, curcumin (2.5 µM) and allopurinol (100 µM) were treated to 5 mM fructose-exposed Buffalo rat liver cell line (BRL-3 A) and human hepatoblastoma cell line (HepG2), respectively. The data from these animal and hepatocyte models showed that curcumin and allopurinol ameliorated fructose-induced metabolic symptom, especially hepatic inflammation in rats. Interestingly, down-regulation of microRNA-200a (miR-200a) was screened out in livers of fructose-fed rats and then validated in fructose-exposed BRL-3 A and HepG2 cells. Fructose-induced miR-200a low-expression was identified as a negative mediator of thioredoxin interacting protein (TXNIP) by direct targeting of 3'UTR-rTXNIP, subsequently activating the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in BRL-3 A cells. Curcumin, as well as allopurinol, notably up-regulated miR-200a expression, accordingly, down-regulated TXNIP and inhibited NLRP3 inflammasome activation in fructose-fed rat livers and fructose-exposed BRL-3 A and HepG2 cells. Taken together, this study firstly identified miR-200a as a biomarker of fructose-induced hepatic inflammation, and revealed the hepatoprotection of curcumin and allopurinol via up-regulating miR-200a-mediated TXNIP/NLRP3 inflammasome pathway.


Assuntos
Alopurinol/farmacologia , Proteínas de Transporte/metabolismo , Curcumina/farmacologia , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Protetoras/farmacologia , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Frutose , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley
3.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
4.
Am J Pathol ; 181(2): 652-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22683467

RESUMO

Tumor development has long been known to resemble abnormal embryogenesis. The embryonic stem cell gene NANOG, a divergent homeodomain transcription factor that is independent of leukemia inhibitory factor, has been reported to be expressed in germ cells and in several tumor types. However, the short-term expression and role of NANOG in cervical cancer remain unclear. In the present study, we demonstrate that NANOG exhibits cellular shuttling behavior and increasing stromal distribution during the progression of cervical cancer. Our molecular data using RT-PCR and restriction enzyme digestion show that NANOG is mainly transcribed from the NANOG gene in cervical cancer. In addition, IHC using confocal microscopy suggests that mesenchymal stem cells (MSCs) are one type of cytoplasmic NANOG-positive cells in cervical cancer stroma. Co-culture of cervical cancer-derived MSCs with SiHa cells showed increased proliferation characteristics in vitro and enhanced tumor growth in vivo. Our results show, for the first time to our knowledge, that MSCs are a source of cytoplasmic NANOG expression in the cervical cancer stroma and that they participate in the progression of cervical cancer both in vitro and in vivo. Our study provides evidence that NANOG is a cervical cancer progression marker and also serves as a starting point for a more extensive exploration of the cellular translocation of NANOG and the multifunctionality of the stromal microenvironment.


Assuntos
Citoplasma/metabolismo , Progressão da Doença , Proteínas de Homeodomínio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Separação Celular , Citoplasma/patologia , Endoglina , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Proteína Homeobox Nanog , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Células Estromais/metabolismo , Células Estromais/patologia , Transcrição Gênica , Neoplasias do Colo do Útero/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 14(1): 989, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813789

RESUMO

The fifth-generation (5G) wireless communication has an urgent need for target tracking. Digital programmable metasurface (DPM) may offer an intelligent and efficient solution owing to its powerful and flexible controls of electromagnetic waves and advantages of lower cost, less complexity and smaller size than the traditional antenna array. Here, we report an intelligent metasurface system to perform target tracking and wireless communications, in which computer vision integrated with a convolutional neural network (CNN) is used to automatically detect the locations of moving targets, and the dual-polarized DPM integrated with a pre-trained artificial neural network (ANN) serves to realize the smart beam tracking and wireless communications. Three groups of experiments are conducted for demonstrating the intelligent system: detection and identification of moving targets, detection of radio-frequency signals, and real-time wireless communications. The proposed method sets the stage for an integrated implementation of target identification, radio environment tracking, and wireless communications. This strategy opens up an avenue for intelligent wireless networks and self-adaptive systems.

6.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757814

RESUMO

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte-specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.


Assuntos
Astrócitos , Transtorno Depressivo Maior , Camundongos , Animais , Astrócitos/metabolismo , Depressão/genética , Transmissão Sináptica , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Antidepressivos , Glucose , Acetilglucosamina/metabolismo
7.
Mol Cell Endocrinol ; 520: 111079, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189863

RESUMO

High fructose is considered a causative factor for oxidative stress and autophagy imbalance that cause kidney pathogenesis. Antioxidant polydatin isolated from Polygonum cuspidatum has been reported to protect against kidney injury. In this study, polydatin was found to ameliorate fructose-induced podocyte injury. It activated mammalian target of rapamycin complex 1 (mTORC1) and suppressed autophagy in glomeruli of fructose-fed rats and in fructose-exposed conditionally immortalized human podocytes (HPCs). Polydatin also enhanced nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant capacity to suppress fructose-induced autophagy activation in vivo and in vitro, with the attenuation of fructose-induced up-regulation of cellular light chain 3 (LC3) II/I protein levels. This effect was abolished by Raptor siRNA in fructose-exposed HPCs. These results demonstrated that polydatin ameliorated fructose-induced autophagy imbalance in an mTORC1-dependent manner via improving Nrf2-dependent antioxidant capacity during podocyte injury. In conclusion, polydatin with anti-oxidation activity suppressed autophagy to protect against fructose-induced podocyte injury.


Assuntos
Antioxidantes/metabolismo , Autofagia , Comportamento Alimentar , Glucosídeos/farmacologia , Homeostase , Fator 2 Relacionado a NF-E2/metabolismo , Podócitos/metabolismo , Estilbenos/farmacologia , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Frutose , Homeostase/efeitos dos fármacos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/complicações , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Agric Food Chem ; 68(5): 1436-1446, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927917

RESUMO

High fructose intake promotes hepatic lipid accumulation. Pterostilbene, a natural analogue of resveratrol found in diet berries, exhibits a hepatoprotective property. Here, we studied the protection by pterostilbene against fructose-induced hepatic lipid accumulation and explored its possible mechanism. We observed a high expression of microRNA-34a (miR-34a, P < 0.05) and a low expression of its target, sirtuin1 (Sirt1, mRNA: P < 0.01; protein: P < 0.001), with the overactivation of downstream sterol regulatory element-binding protein-1 (SREBP-1) lipogenic pathway (nuclear SREBP-1 protein: P < 0.05; FAS and SCD1 mRNA: P < 0.01), in rat livers, as well as BRL-3A and HepG2 cells, stimulated by fructose. More interestingly, pterostilbene recovered the fructose-disturbed miR-34a expression (0.3-0.5-fold vs fructose control, P < 0.05), Sirt1 protein level (1.2- to 1.5-fold vs fructose control, P < 0.05), and SREBP-1 lipogenic pathway, resulting in significant amelioration of hepatocyte lipid accumulation in animal [hepatic triglyceride and total cholesterol (TG&TC) mg/g·wet tissue: 4.90 ± 0.19, 5.23 ± 0.16, 5.20 ± 0.29 vs fructose control 9.73 ± 1.06, P < 0.001; 3.18 ± 0.30, 3.31 ± 0.39, 3.37 ± 0.47 vs 5.67 ± 0.28, P < 0.001] and cell models (BRL-3A TG&TC mmol/g·protein: 0.123 ± 0.011 vs 0.177 ± 0.004, P < 0.001; 0.169 ± 0.011 vs 0.202 ± 0.008, P < 0.05; HepG2: 0.257 ± 0.005 vs 0.303 ± 0.016, P < 0.05; 0.143 ± 0.004 vs 0.201 ± 0.008, P < 0.001). These results provide the experimental evidence supporting the anti-lipogenic effect of pterostilbene against fructose-induced hepatic lipid accumulation via modulating the miR-34a/Sirt1/SREBP-1 pathway.


Assuntos
Frutose/metabolismo , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Estilbenos/administração & dosagem , Animais , Colesterol/metabolismo , Frutose/efeitos adversos , Fígado/metabolismo , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
9.
Oncol Lett ; 18(2): 2066-2072, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31423279

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed malignancy in men and its incidence has increased rapidly worldwide. Notably, the molecular mechanisms underlying prostate tumorigenesis have not been fully identified. The levels of microRNA (miR)-381 have been explored in numerous types of malignancy; however, the expression levels and biological function of miR-381 in PCa remain largely unknown. In the present study, reverse-transcription polymerase chain reaction was used to detect the expression levels of miR-381 in PCa cells and normal prostate epithelial cells. Subsequently, miR-381 antisense oligonucleotides and mimics were transfected into LNCaP PCa cells. Bioinformatics analysis was performed to identify the potential target genes of miR-381. Protein expression analysis, dual-luciferase reporter assay and a rescue assay were used to confirm the target of miR-381. The data suggested that the expression levels of miR-381 were significantly decreased in PCa cells compared with in normal prostatic epithelial cells. Furthermore, transfection of LNCaP cells with miR-381 mimics suppressed their proliferation, migration and invasion. In addition, bioinformatics analysis suggested that the androgen receptor (AR) was a target gene of miR-381. miR-381 suppressed the expression levels of AR by directly binding to its 3'-untranslated region. Furthermore, transfection with an AR plasmid partially attenuated miR-381-induced inhibition of cell proliferation, migration and invasion. The results of the present study suggested that miR-381 may act as a tumor suppressor in PCa by directly targeting the AR.

10.
Int Immunopharmacol ; 67: 378-385, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30584967

RESUMO

INTRODUCTION: Newly published results of clinical trials has demonstrated immune checkpoint inhibitors as robust antitumor agents for urothelial carcinoma patients. However, searching for predictive biomarkers is still on the way. Previous clinical trials used PD-L1 as biomarkers, however, whether it can predict the objective response rate and overall survival is controversial. This is the first and latest study to pool the newest data in order the evaluate PD-L1 biomarker. RESULT: Nine studies were included and 1,436 urothelial carcinoma patients were included. We evaluated PD-L1 biomarker for atezolizumab, nivolumab, durvalumab, avelumab, and pembrolizumab treatments. Patients with higher PD-L1 expression have significantly higher objective response rate compared with the lower ones. PD-L1 predicted the one year overall survival of PD-L1 inhibitors but not PD-1 inhibitors. Only one year overall survival of durvalumab was significantly associated with PD-L1 expression. CONCLUSION: PD-L1 can be used as a biomarker for objective response rate, while PD-L1 cannot predict the overall survival.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Neoplasias da Bexiga Urinária/sangue , Antígeno B7-H1/genética , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
11.
Eur J Pharmacol ; 842: 70-78, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30336139

RESUMO

High dietary fructose is a key causative factor in the development of renal fibrosis. Pterostilbene has anti-fibrotic effect. Understanding the action mechanism of pterostilbene in fructose-induced renal fibrosis remains as a challenge. Here, fructose feeding was found to promote the progress of epithelial-to-mesenchymal transition (EMT) of proximal tubule epithelial cells (PTECs) and collagen deposition in renal cortex of rats with tubulointerstitial fibrosis. Simultaneously, it impaired insulin receptor (IR)/insulin receptor substrate-1 (IRS-1)/protein kinase B (Akt) pathway, and increased transforming growth factor-beta 1 (TGF-ß1) and TGF-ß type I receptor to enhance phosphorylation of drosophila mothers against decapentaplegic homolog 2 (Smad2) and Smad3, and Smad4 expression in rat kidney cortex. These changes were also observed in cultured PTECs HK-2 cells exposed to 5 mM fructose. The data from fructose-exposed HK-2 cells co-incubated with TGF-ß type I receptor inhibitor further demonstrated that the activation of TGF-ß1/TGF-ß type I receptor/Smads signaling promoted renal tubular EMT and collagen accumulation. Pterostilbene was found to ameliorate fructose-induced renal fibrosis in rats. Importantly, pterostilbene improved IR/IRS-1/Akt pathway impairment and suppressed TGF-ß1/TGF-ß type I receptor/Smads signaling activation in vivo and in vitro, being consistent with its reduction of EMT and collagen deposition. Upregulation of IR/Akt signaling by pterostilbene was also confirmed in Akt inhibitor (MK-2206 2HCl) or IR inhibitor (GSK1904529A)-treated HK-2 cells. Taken together, pterostilbene may be a promising therapeutic agent for the treatment of fructose-induced kidney fibrosis with insulin signaling impairment.


Assuntos
Células Epiteliais/patologia , Frutose/efeitos adversos , Túbulos Renais Proximais/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteínas Smad/metabolismo , Estilbenos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Citoproteção/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Insulina/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
12.
Free Radic Biol Med ; 130: 542-556, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465824

RESUMO

An increasing number of studies have shown that air pollution containing particulate matter (PM) ≤ 2.5 µm (PM2.5) plays a significant role in the development of metabolic disorder and other chronic diseases. Inflammation and oxidative stress caused by metabolic syndrome are widely determined to be critical factors in the development of nonalcoholic fatty liver disease (NAFLD) pathogenesis. However, there is no direct evidence of this, and the underlying molecular mechanism is still not fully understood. In this study, we investigated the role of inflammation and oxidative stress caused by prolonged PM2.5 exposure in dyslipidemia-associated chronic hepatic injury, and further determined whether an increase in hepatic inflammation and oxidative stress promoted lipid accumulation in the liver, ultimately increasing the risk of NAFLD. Therefore, we studied changes in indicators of metabolic disorder and in symbolic indices of NAFLD. We confirmed increases in insulin resistance, glucose tolerance, peripheral inflammation and dysarteriotony in PM2.5-induced mice. Oxidative stress and inflammatory response in the liver caused by PM2.5 inhalation contributed to abnormal hepatic function, further promoting lipid accumulation in the liver. Moreover, we observed inhibition of oxidative stress and inflammatory response by pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) in vitro, suggesting that oxidative stress and inflammatory in liver cells aggravated by PM2.5 contributed to hepatic injury by altering normal lipid metabolism. These results indicate a new goal for preventing and treating air pollution-induced diseases: suppression of oxidative stress and inflammatory response.


Assuntos
Dislipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Acetilcisteína/farmacologia , Poluentes Atmosféricos/toxicidade , Animais , Dislipidemias/metabolismo , Dislipidemias/patologia , Hepatócitos/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Material Particulado/química , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia
13.
Free Radic Biol Med ; 141: 67-83, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31153974

RESUMO

Endoplasmic reticulum stress (ERS) has been implicated in obesity-associated cardiac remodeling and dysfunction. Inactive rhomboid protein 2 (iRhom2), also known as Rhbdf2, is an inactive member of the rhomboid intramembrane proteinase family, playing an essential role in regulating inflammation. Nevertheless, the role of ERS-meditated iRhom2 pathway in metabolic stress-induced cardiomyopathy remains unknown. In the study, we showed that 4-PBA, as an essential ERS inhibitor, significantly alleviated high fat diet (HFD)-induced metabolic disorder and cardiac dysfunction in mice. Additionally, lipid deposition in heart tissues was prevented by 4-PBA in HFD-challenged mice. Moreover, 4-PBA blunted the expression of iRhom2, TACE, TNFR2 and phosphorylated NF-κB to prevent HFD-induced expression of inflammatory factors. Further, 4-PBA restrained HFD-triggered oxidative stress by promoting Nrf-2 signaling. Importantly, 4-PBA markedly suppressed cardiac ERS in HFD mice. The anti-inflammation, anti-ERS and anti-oxidant effects of 4-PBA were verified in palmitate (PAL)-incubated macrophages and cardiomyocytes. In addition, promoting ERS could obviously enhance iRhom2 signaling in vitro. Intriguingly, our data demonstrated that PAL-induced iRhom2 up-regulation apparently promoted macrophage to generate inflammatory factors that could promote cardiomyocyte inflammation and lipid accumulation. Finally, interventions by adding fisetin or metformin significantly abrogated metabolic stress-induced cardiomyopathy through the mechanisms mentioned above. In conclusion, this study provided a novel mechanism for metabolic stress-induced cardiomyopathy pathogenesis. Therapeutic strategy to restrain ROS/ERS/iRhom2 signaling pathway could be developed to prevent myocardial inflammation and lipid deposition, consequently alleviating obesity-induced cardiomyopathy.


Assuntos
Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Flavonoides/farmacologia , Coração/fisiopatologia , Metabolismo dos Lipídeos , Metformina/farmacologia , Animais , Peso Corporal , Dieta Hiperlipídica , Ecocardiografia , Flavonóis , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Estresse Oxidativo , Palmitatos/metabolismo , Transdução de Sinais , Regulação para Cima
15.
Nanotoxicology ; 12(9): 1045-1067, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30257117

RESUMO

Research suggests that particulate matter (PM2.5) is a predisposing factor for metabolic syndrome-related systemic inflammation and oxidative stress injury. TNF-α as a major pro-inflammatory cytokine was confirmed to participate in various diseases. Inactive rhomboid protein 2 (iRhom2) was recently determined as a necessary regulator for shedding of TNF-α in immune cells. Importantly, kidney-resident macrophages are critical to inflammation-associated chronic renal injury. Podocyte injury can be induced by stimulants and give rise to nephritis, but how iRhom2 contributes to PM2.5-induced renal injury is unclear. Thus, we studied whether PM2.5 causes renal injury and characterized iRhom2 with respect to TNF-α release in mice macrophages and renal tissues in long-term PM2.5-exposed mouse models. After long-term PM2.5 exposures, renal injury was confirmed via inflammatory cytokine, chemokine expression, and reduced antioxidant activity. Patients with kidney-related diseases had increased TNF-α, which may contribute to renal injury. We observed up-regulation of serum creatinine, serum urea nitrogen, kidney injury molecule 1, uric acid, TNF-α, MDA, H2O2, and O2- in PM2.5-treated mice, which was greater than that found in Nrf2-/- mice. Meanwhile, increases in metabolic disorder-associated indicators were involved in PM2.5-induced nephritis. In vitro, kidney-resident macrophages were observed to be critical to renal inflammatory infiltration and function loss via regulation of iRhom2/TACE/TNF-α signaling, and suppression of Nrf2-associated anti-oxidant response. PM2.5 exposure led to renal injury partly by inflammation-mediated podocyte injury. Reduced SOD1, SOD2, Nrf2 activation, and increased XO, NF-κB activity, TACE, iNOS, IL-1ß, TNF-α, IL-6, MIP-1α, Emr-1, MCP-1, and Cxcr4, were also noted. Long-term PM2.5 exposure causes chronic renal injury by up-regulation of iRhom2/TACE/TNF-α axis in kidney-resident macrophages. Overexpression of TNF-α derived from macrophages causes podocyte injury and kidney function loss. Thus, PM2.5 toxicities are related to exposure duration and iRhom2 may be a potential therapeutic renal target.


Assuntos
Poluentes Atmosféricos/toxicidade , Proteínas de Transporte/genética , Rim/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Material Particulado/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Inflamação , Rim/imunologia , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo
16.
Adv Healthc Mater ; 7(17): e1800427, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944201

RESUMO

The mortality rate of acute liver failure significantly increases due to fatal septicemia. Inactive rhomboid protein 2 (iRhom2) is an essential regulator of shedding TNF-α by trafficking with TNF-α converting enzyme (TACE). Fisetin, a flavonoid present in various fruits and plants, possesses anti-oxidative stress and anti-inflammatory activities. Here, multi-combination nanoparticles Fe@Au conjugated with fisetin, iRhom2 small interfering RNA (siRNA), and TNF-α inhibitor (FN) are prepared to examine their effects on fatal septicemia-associated hepatic failure induced by Listeria monocytogenes (LM) in mice and to reveal the underlying mechanisms. After LM infection, upregulation of glutamic-oxalacetic transaminease, glutamic-pyruvic transaminase, alkaline phosphatase, TNF-α, malondialdehyde, H2 O2 , and O2- is observedcompared to FN-treated mice. The iRhom2/TACE/TNF-α signals are enhanced in vivo and in vitro, resulting in oxidative stress, which is especially associated with the activation of kupffer cells and other macrophages. Decrease in Nrf2 activation and increase of inflammation-associated regulators are also noted in vivo and in vitro. Furthermore, overexpression of TNF-α derived from macrophages aggravates hepatic failure. Inversely, the processes above are restored by FN nanoparticles through the regulation of the iRhom2/TACE/TNF-α axis and Nrf2 activation. These findings suggest that FN may be a potential approach to protect against bacterial septicemia-related diseases by targeting iRhom2.


Assuntos
Proteínas de Transporte/metabolismo , Listeria monocytogenes/patogenicidade , Falência Hepática/metabolismo , Falência Hepática/microbiologia , Sepse/metabolismo , Sepse/microbiologia , Proteína ADAM17/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Zhonghua Fu Chan Ke Za Zhi ; 42(6): 370-3, 2007 Jun.
Artigo em Zh | MEDLINE | ID: mdl-17697595

RESUMO

OBJECTIVES: To explore the relationship between different subtypes of Ureaplasma Urealyticum infection and ectopic pregnancy. METHODS: Ectopic pregnancy group included 33 patients and another 40 patients undergoing salpingo-ovariectomy with ovarian cyst or uterine myoma were investigated as control group. Polymerase chain reaction technique was used to detect Uu DNA in the two groups samples from endosalpinx and secretion of cervix. At the same time, these samples were set to electron microscope for examination. RESULTS: (1) Uu was detected in 27 fallopian tubal epithelium tissues among 33 ectopic pregnancy samples (81.8%), in which biovar1 was positive in 17 samples (52%, 17/33), biovar 2 was positive in 15 (46%, 15/33) and both biovar 1 and 2 positive was 5 (15.2%). While in the control group, Uu was detected in 24 fallopian tubal epithelium tissues among 40 samples (60%), in which biovar1 was positive in 21 samples (52%, 21/40), biovar 2 was positive in 5 (12%, 5/40) and both biovar 1 and 2 positive was 2 (5%). There was no significant difference between the two groups in Uu of biovar 1 (P > 0.05). The positive rate of Uu in biovar 2 show a significant difference (P < 0.05). (2) Co-expression samples in both fallopian tubal epithelium and cervical mucus samples from ectopic pregnancy patients in biovar1 was 13 (72.2%), and in biovar 2 was 11 (71.4%). While in control group, co-expression samples in both fallopian tubal epithelium and cervical mucus samples in biovar 1 was 18 (81.8%), and in biovar 2 was 5 (71.4%). There was no significant difference between the two groups in co-expression in both fallopian tubal epithelium and cervical mucus samples (P > 0.05). (2) The fallopian tubes infected by biovar 2 have a high rate (90%) of ciliary adhesion and exuviation. While there is a low rate (10%) for biovar1 with ciliary adhesion and exuviation. There was significant difference between the two groups of Uu (P < 0.05). CONCLUSION: The infection of ureaplasma urealyticum may increase the occurrence of fallopian pregnancy. The infection of ureaplasma urealyticum may be concerned with the morphological changes and functional damage of uterine fallopian epithelium.


Assuntos
Complicações Infecciosas na Gravidez/microbiologia , Gravidez Ectópica/microbiologia , Infecções por Ureaplasma/microbiologia , Ureaplasma urealyticum/isolamento & purificação , Adulto , Muco do Colo Uterino/microbiologia , DNA Bacteriano/genética , Epitélio/microbiologia , Epitélio/patologia , Epitélio/ultraestrutura , Tubas Uterinas/microbiologia , Tubas Uterinas/patologia , Tubas Uterinas/ultraestrutura , Feminino , Humanos , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Gravidez , Ureaplasma urealyticum/genética
19.
Mol Nutr Food Res ; 61(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28205387

RESUMO

SCOPE: Fructose induces insulin resistance with kidney inflammation and injury. MicroRNAs are emerged as key regulators of insulin signaling. Morin has insulin-mimetic effect with the improvement of insulin resistance and kidney injury. This study investigated the protective mechanisms of morin against fructose-induced kidney injury, with particular focus on miR-330 expression change, inflammatory response, and insulin signaling impairment. METHODS AND RESULTS: miR-330, sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR)1/3 signaling, nuclear factor-κB (NF-κB)/NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and insulin signaling were detected in kidney cortex of fructose-fed rats and fructose-exposed HK-2 cells, respectively. Whether miR-330 mediated inflammatory response to affect insulin signaling was examined using SphK1 inhibitor, S1PR1/3 short interfering RNA, or miR-330 mimic/inhibitor, respectively. Fructose was found to downregulate miR-330 expression to increase SphK1/S1P/S1PR1/3 signaling, and then activate NF-κB/NLRP3 inflammasome to produce IL-1ß, causing insulin signaling impairment. Moreover, morin upregulated miR-330 and partly attenuated inflammatory response and insulin signaling impairment to alleviate kidney injury. CONCLUSION: These findings suggest that morin protects against fructose-induced kidney insulin signaling impairment by upregulating miR-330 to reduce inflammatory response. Morin may be a potential therapeutic agent for the treatment of kidney injury associated with fructose-induced inflammation and insulin signaling impairment.


Assuntos
Flavonoides/farmacologia , Frutose/efeitos adversos , Insulina/metabolismo , Nefrite/tratamento farmacológico , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Hiperuricemia/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Túbulos Renais Proximais/citologia , Masculino , MicroRNAs , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrite/induzido quimicamente , Nefrite/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA