Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(36): e2221982120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643215

RESUMO

Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and ß1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.


Assuntos
Epiderme , Pele , Personalidade , Organoides , Emoções , Proteínas Adaptadoras de Transdução de Sinal
2.
Angiogenesis ; 27(2): 147-172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409567

RESUMO

Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.


Assuntos
Células Endoteliais , Organoides , Hidrogéis , Microvasos , Dispositivos Lab-On-A-Chip
3.
Anal Chem ; 96(3): 1223-1231, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38205554

RESUMO

Oral squamous cell carcinoma (OSCC) has become a global health problem due to its increasing incidence and high mortality rate. Early intervention through monitoring of the diagnostic biomarker levels during OSCC treatment is critical. Extracellular vesicles (EVs) are emerging surrogates in intercellular communication through transporting biomolecule cargo and have recently been identified as a potential source of biomarkers such as phosphoproteins for many diseases. Here, we developed a multiple reaction monitoring cubed (MRM3) method coupled with a novel sample preparation strategy, extracellular vesicles to phosphoproteins (EVTOP), to quantify phosphoproteins using a minimal amount of saliva (50 µL) samples from OSCC patients with high specificity and sensitivity. Our results established differential patterns in the phosphopeptide content of healthy, presurgery, and postsurgery OSCC patient groups. Notably, we discovered significantly increased salivary phosphorylated alpha-amylase (AMY) in the postsurgery group compared to the presurgery group. We hereby present the first targeted MS method with extremely high sensitivity for measuring endogenous phosphoproteins in human saliva EVs.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/diagnóstico , Biomarcadores Tumorais/análise , Saliva/química , Neoplasias Bucais/diagnóstico , Vesículas Extracelulares/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfoproteínas/análise
4.
Small ; 20(3): e2306524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697691

RESUMO

Photonic crystal hydrogels (PCHs), with smart stimulus-responsive abilities, have been widely exploited as colorimetric sensors for years. However, the current fabrication technologies are mostly applicable to produce PCHs with simple geometries at the sub-millimeter scale, limiting the introduction of structural design into PCH sensors as well as the accompanied advanced applications. This paper reports the microfabrication of three-dimensional (3D) PCHs with the help of supramolecular agarose PCH as a sacrificial scaffold by two-photon lithography (TPL). The supramolecular PCHs, formulated with SiO2 colloidal nanoparticles and agarose aqueous solutions, show bright structural color and are degradable upon short-time dimethyl sulfoxide treatment. Leveraging the supramolecular PCH as a sacrificial scaffold, PCHs with precise 3D geometries can be fabricated in an economical and efficient way. This work demonstrates the application of such a strategy in the creation of structural-designed PCH mechanical microsensors that have not been explored before.

5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941687

RESUMO

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Assuntos
Dispositivos Lab-On-A-Chip , Modelos Biológicos , Alvéolos Pulmonares/fisiologia , Células Epiteliais Alveolares , Antivirais/farmacologia , Fumar Cigarros/efeitos adversos , Dimetilpolisiloxanos/química , Gelatina/química , Humanos , Hidrogéis/química , Metacrilatos/química , Porosidade , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , Respiração , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
6.
Proteomics ; 23(5): e2200319, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573687

RESUMO

Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Biomarcadores Tumorais/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Saliva/metabolismo
7.
Small ; 19(34): e2207640, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078893

RESUMO

Unidirectional liquid transport has been extensively explored for water/fog harvesting, electrochemical sensing, and desalination. However, current research mainly focuses on linear liquid transport (transport angle α = 0°), which exhibits hindered lateral liquid spreading and low unidirectional transport efficiency. Inspired by the wide-angle (0° < α < 180°) liquid transport on butterfly wings, this work successfully achieves linear (α = 0°), wide-angle, and even ultra-wide-angle (α = 180°) liquid transport by four-dimensional (4D) printing of butterfly scale-inspired re-entrant structures. These asymmetric re-entrant structures can achieve unidirectional liquid transport, and their layout can control the Laplace pressure in the forward (structure-tilting) and lateral directions to adjust the transport angle. Specifically, high transport efficiency and programmable forward/lateral transport paths are simultaneously achieved by the ultra-wide-angle transport, where liquid fills the lateral path before being transported forward. Moreover, the ultra-wide-angle transport is also validated in 3D space, which provides an innovative platform for advanced biochemical microreaction, large-area evaporation, and self-propelled oil-water separation.

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1093-1101, 2023 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-38151931

RESUMO

Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors' laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.


Assuntos
Musicoterapia , Música , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Depressão/diagnóstico , Depressão/terapia , Eletroencefalografia
9.
Angew Chem Int Ed Engl ; 62(29): e202305668, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216424

RESUMO

Many biological processes are regulated through dynamic protein phosphorylation. Monitoring disease-relevant phosphorylation events in circulating biofluids is highly appealing but also technically challenging. We introduce here a functionally tunable material and a strategy, extracellular vesicles to phosphoproteins (EVTOP), which achieves one-pot extracellular vesicles (EVs) isolation, extraction, and digestion of EV proteins, and enrichment of phosphopeptides, with only a trace amount of starting biofluids. EVs are efficiently isolated by magnetic beads functionalized with TiIV ions and a membrane-penetrating peptide, octa-arginine R8 + , which also provides the hydrophilic surface to retain EV proteins during lysis. Subsequent on-bead digestion concurrently converts EVTOP to TiIV ion-only surface for efficient enrichment of phosphopeptides for phosphoproteomic analyses. The streamlined, ultra-sensitive platform enabled us to quantify 500 unique EV phosphopeptides with only a few µL of plasma and over 1200 phosphopeptides with 100 µL of cerebrospinal fluid (CSF). We explored its clinical application of monitoring the outcome of chemotherapy of primary central nervous system lymphoma (PCNSL) patients with a small volume of CSF, presenting a powerful tool for broad clinical applications.


Assuntos
Vesículas Extracelulares , Fosfopeptídeos , Humanos , Fosfopeptídeos/metabolismo , Vesículas Extracelulares/química , Proteoma/metabolismo , Fosfoproteínas/metabolismo
10.
Langmuir ; 38(40): 12132-12139, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36184816

RESUMO

The morphology of nanoparticles plays a critical role in determining their properties and applications. Herein, we report a versatile approach to the fabrication of nonspherical polystyrene (PS) nanoparticles with controlled morphologies on the basis of kinetically controlled seed-mediated polymerization. By manipulating parameters related to the reaction kinetics including the concentration of monomers, injection rate of reactants, and reaction temperature, the monomers could be directed to polymerize on the selective sites of PS seeds, and after the removal of the second polymer, nonspherical nanoparticles with a variety of thermodynamically unfavored morphologies could be synthesized. We systematically investigated the formation mechanism of these nonspherical nanoparticles by monitoring the evolution of seeds during the reaction. Moreover, we have also successfully extended this strategy to reaction systems containing monomers with different combinations and seeds with different sizes. We believe this work will provide a promising route to the fabrication of nonspherical polymer nanoparticles with controlled morphologies for various applications.

11.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35271044

RESUMO

The demand for non-laboratory and long-term EEG acquisition in scientific and clinical applications has put forward new requirements for wearable EEG devices. In this paper, a new wearable frontal EEG device called Mindeep was proposed. A signal quality study was then conducted, which included simulated signal tests and signal quality comparison experiments. Simulated signals with different frequencies and amplitudes were used to test the stability of Mindeep's circuit, and the high correlation coefficients (>0.9) proved that Mindeep has a stable and reliable hardware circuit. The signal quality comparison experiment, between Mindeep and the gold standard device, Neuroscan, included three tasks: (1) resting; (2) auditory oddball; and (3) attention. In the resting state, the average normalized cross-correlation coefficients between EEG signals recorded by the two devices was around 0.72 ± 0.02, Berger effect was observed (p < 0.01), and the comparison results in the time and frequency domain illustrated the ability of Mindeep to record high-quality EEG signals. The significant differences between high tone and low tone in auditory event-related potential collected by Mindeep was observed in N2 and P2. The attention recognition accuracy of Mindeep achieved 71.12% and 74.76% based on EEG features and the XGBoost model in the two attention tasks, respectively, which were higher than that of Neuroscan (70.19% and 72.80%). The results validated the performance of Mindeep as a prefrontal EEG recording device, which has a wide range of potential applications in audiology, cognitive neuroscience, and daily requirements.


Assuntos
Eletroencefalografia , Dispositivos Eletrônicos Vestíveis , Eletroencefalografia/métodos , Potenciais Evocados , Lobo Frontal , Reconhecimento Psicológico
12.
Small ; 17(34): e2101048, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34269514

RESUMO

Two-photon lithography (TPL) is a powerful tool to construct small-scale objects with complex and precise 3D architectures. While the limited selection of chemical functionalities on the printed structures has restricted the application of this method in fabricating functional objects and devices, this study presents a facile, efficient, and extensively applicable method to functionalize the surfaces of the objects printed by TPL. TPL-printed objects, regardless of their compositions, can be efficiently functionalized by combining trichlorovinylsilane treatment and thiol-ene chemistry. Various functionalities can be introduced on the printed objects, without affecting their micro-nano topographies. Hence, microstructures with diverse functions can be generated using non-functional photoresists. Compared to existed strategies, this method is fast, highly efficient, and non photoresist-dependent. In addition, this method can be applied to various materials, such as metals, metal oxides, and plastics that can be potentially utilized in TPL or other 3D printing technologies. The applications of this method on the biofunctionalization of microrobots and cell scaffolds are also demonstrated.


Assuntos
Impressão Tridimensional , Impressão , Compostos de Sulfidrila
13.
Small ; 17(35): e2102224, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310021

RESUMO

Dynamic fluorescence patterns with variable output in response to external stimulus can make the current information storage technologies more flexible and intelligent. Yet it remains a great challenge to create such dynamic patterns because of the complicated synthesis process, high cost, limited stability, and biocompatibility of the functional fluorophores. Herein, a facile approach is presented for creating dynamic fluorescence patterns using the photodynamic surface chemistry based on disulfide bonds. By this method, high-resolution (≈20 µm) multicolor dynamic fluorescence patterns that are low-cost and dynamically rewritable can be easily fabricated using classical fluorophores such as fluorescein, rhodamine, and dansyl acid. Owing to the spatio-temporal controllability of light, the fluorescence patterns can be partly or entirely erased/rewritten on demand, and complex gray-level fluorescence images with increased information capacity can be easily generated. The obtained fluorescence patterns exhibit little changes after storing in air and solvent environments for 100 days, demonstrating their high stability. In addition, static patterns can also be created on the same disulfide surface using irreversible disulfide-ene chemistry, to selectively control the dynamicity of the generated fluorescence patterns. The authors show the successful application of this strategy on information protection and transformation.


Assuntos
Dissulfetos , Corantes Fluorescentes , Fluorescência , Armazenamento e Recuperação da Informação
14.
Analyst ; 145(4): 1531, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31853531

RESUMO

Correction for 'A bio-inspired photonic nitrocellulose array for ultrasensitive assays of single nucleic acids' by Junjie Chi, et al., Analyst, 2018, 143, 4559-4565.

15.
Proc Natl Acad Sci U S A ; 114(23): 5900-5905, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533368

RESUMO

Biologically inspired self-healing structural color hydrogels were developed by adding a glucose oxidase (GOX)- and catalase (CAT)-filled glutaraldehyde cross-linked BSA hydrogel into methacrylated gelatin (GelMA) inverse opal scaffolds. The composite hydrogel materials with the polymerized GelMA scaffold could maintain the stability of an inverse opal structure and its resultant structural colors, whereas the protein hydrogel filler could impart self-healing capability through the reversible covalent attachment of glutaraldehyde to lysine residues of BSA and enzyme additives. A series of unprecedented structural color materials could be created by assembling and healing the elements of the composite hydrogel. In addition, as both the GelMA and the protein hydrogels were derived from organisms, the composite materials presented high biocompatibility and plasticity. These features of self-healing structural color hydrogels make them excellent functional materials for different applications.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Materiais Biocompatíveis/química , Coloides/química , Células Hep G2 , Humanos , Nanoestruturas/química , Nanotecnologia/métodos
16.
Anal Chem ; 91(7): 4224-4234, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30883096

RESUMO

Recently, smart flexible membranes (SFMs), especially paper, have flourished, and SFM-based devices are characterized by passive response to external stimuli and manipulate liquids and electronics, making SFMs suitable for (bio)chemical sensing, display, wearable sensing, and energy harvesting. In this Feature, we summarize both the historical development and recent advances in SFM-based devices built with both traditional papers and other flexible membranes, including passive responses to external stimuli, manipulation of microfluidics and electronics, and multiple applications based on such manipulation.

17.
Small ; 15(35): e1902360, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31305010

RESUMO

Surfaces combining antispreading and high adhesion can find wide applications in the manipulation of liquid droplets, generation of micropatterns and liquid enrichment. To fabricate such surfaces, almost all the traditional methods demand multi-step processes and chemical modification. And even so, most of them cannot be applied for some liquids with extremely low surface energy. In the past decade, multiply re-entrant structures have aroused much attention because of their universal and modification-independent antiadhesion or antipenetration ability. Unfortunately, theories and applications about their liquid adhesion behavior are still rare. In this work, inspired by the springtail skin and gecko feet in the adhered state, it is demonstrated that programmable liquid adhesion is realized on the 3D-printed micro doubly re-entrant arrays. By arranging the arrays reasonably, three different Cassie adhesion behaviors can be obtained: I) no residue adhesion, II) tunable adhesion, and III) absolute adhesion. Furthermore, various arrays are designed to tune macro/micro liquid droplet manipulation, which can find applications in the transportation of liquid droplets, liquid enrichment, generation of tiny droplets, and micropatterns.

18.
Entropy (Basel) ; 21(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33267323

RESUMO

Exploring the manifestation of emotion in electroencephalogram (EEG) signals is helpful for improving the accuracy of emotion recognition. This paper introduced the novel features based on the multiscale information analysis (MIA) of EEG signals for distinguishing emotional states in four dimensions based on Russell's circumplex model. The algorithms were applied to extract features on the DEAP database, which included multiscale EEG complexity index in the time domain, and ensemble empirical mode decomposition enhanced energy and fuzzy entropy in the frequency domain. The support vector machine and cross validation method were applied to assess classification accuracy. The classification performance of MIA methods (accuracy = 62.01%, precision = 62.03%, recall/sensitivity = 60.51%, and specificity = 82.80%) was much higher than classical methods (accuracy = 43.98%, precision = 43.81%, recall/sensitivity = 41.86%, and specificity = 70.50%), which extracted features contain similar energy based on a discrete wavelet transform, fractal dimension, and sample entropy. In this study, we found that emotion recognition is more associated with high frequency oscillations (51-100Hz) of EEG signals rather than low frequency oscillations (0.3-49Hz), and the significance of the frontal and temporal regions are higher than other regions. Such information has predictive power and may provide more insights into analyzing the multiscale information of high frequency oscillations in EEG signals.

19.
Analyst ; 143(11): 2448-2458, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29748684

RESUMO

Photonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons. The merging of photonic crystals with plasmonics will significantly improve biosensor performances and enlarge the linear detection range of analytical targets. Here, we review the state-of-the-art biosensors that combine PhC and plasmonic nanomaterials for quantitative analysis. The optical mechanisms of PhCs, plasmonic crystals, and metal nanoparticles (NPs) are presented, along with their integration and potential applications. By explaining the optical coupling of photonic crystals and plasmonics, the review manifests how PhC-plasmonic hybrid biosensors can achieve the advantages, including high sensitivity, low cost, and short assay time as well. The review also discusses the challenges and future opportunities in this fascinating field.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Fótons
20.
Analyst ; 143(19): 4559-4565, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30090914

RESUMO

Here we report a bio-inspired photonic nitrocellulose array for ultrasensitive nucleic-acid detection. The patterned photonic nitrocellulose array is inspired by the Stenocara beetle living in the desert, which can collect water on its bumpy back surface from early morning fogs so that spontaneous generation of separated reaction droplets for loop-mediated isothermal amplification (LAMP)-based detection is enabled. Owing to the slow-photon effect of the photonic nitrocellulose, the fluorescence signal of calcein produced during the LAMP reaction can be effectively enhanced (up to 32 fold), which results in dramatically improved sensitivity for the detection of single nucleic acids in 40 min. We demonstrate that Staphylococcus aureus (SA) DNA can be quantitatively detected with a limit-of-detection of 0.60 copy per µL. The consumption of reagents and sample is also remarkably reduced owing to the highly decreased dead volume of the nitrocellulose substrate. Therefore, this bio-inspired photonic nitrocellulose array is promising for carrying out inexpensive, ultrasensitive, and high-throughput nucleic-acid detection under resource-limited settings.


Assuntos
Colódio/química , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos/análise , DNA Bacteriano/análise , Fluoresceínas/química , Fluorescência , Fótons , Sensibilidade e Especificidade , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA