Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19133-19145, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859055

RESUMO

Magnetorheological finishing (MRF) is a deterministic optical processing technique based on CCOS that achieves high removal efficiency and processing accuracy while reducing subsurface damage. This technique still suffers from multiple iterations of processing due to variations in removal efficiency and the inability to fully correct mid-frequency errors below the cut-off frequency of the removal function. For the above problems, this paper attempted to establish the error model of removal function efficiency change for predicting the change of MRF efficiency. Based on the analysis of the distribution of surface shape residuals under different machining paths, a process combining spiral scanning and raster scanning is proposed, which can realize the correction of surface shape and restrain the deterioration of mid-frequency errors. The experimental results show that when the low-frequency errors of fused silica element surface converge rapidly, by optimizing the machining removal coefficient and using the spiral scanning and raster scanning combined method, the PSD analysis results show that the mid-frequency errors of the combined process is lower than the initial value, which expands the process route for the MRF of high-precision optical elements.

2.
Opt Express ; 31(1): 698-713, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607003

RESUMO

With the development of short wavelength optics, high requirements are put forward for the full frequency errors of optical elements, while the processing efficiency and surface quality of traditional polishing methods are difficult to meet their requirements. In this paper, a fluid lubricated polishing method is proposed by combining non-Newtonian fluid with traditional polishing methods. According to Preston equation and shear thickening principle, the tool influence function of fluid lubricated polishing is established and verified by experiments. The results show that the fluid lubricated polishing has a very good convergence ability to the full frequency error of the workpiece. In addition, the convergence rate of fluid lubricated polishing on roughness is about twice that of chemical mechanical polishing. Finally, fluid lubricated polishing extends Preston from Newtonian fluid polishing to non-Newtonian fluid polishing.

3.
Opt Express ; 31(22): 36845-36858, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017826

RESUMO

For ultra-precision machining of convex blazed grating elements there are inevitable machining errors, surface defects, and surface roughness, all of which can have an impact on their diffraction efficiency. In this paper, we use PCGrate software based on the integration method to establish the machining error model, surface defect model, and surface roughness model of convex spherical blazed grating with a curvature radius of 41.104 mm, a substrate diameter of 14 mm, a grating density of 53.97 line/mm and a blazed angle of 3.86° as the basic specification. To investigate the effect of base curvature radius error, grating period error, blazed angle error, grating ridge and valley passivation radius, Poisson burr height, and blaze surface roughness on their -1 order diffraction efficiency in the 0.95-2.5 µm spectral range. The results show that when the curvature radius error of the spherical base is less than ±80µm, the influence on diffraction efficiency can be ignored. Among the three groups of grating microstructure parameters, the influence of blazed angle on grating diffraction efficiency is the largest, followed by a grating period, and the influence of grating apex angle is the smallest, among which when the error of blazed angle is less than ±0.1° and the error of grating period is less than ±0.1µm, the influence on diffraction efficiency can be ignored. The effect of the passivation radius of the grating valley on the diffraction efficiency is smaller than that of the passivation radius of the grating ridge, and the maximum reduction of diffraction efficiency is 0.096 and 0.144 when the grating ridge and valley passivation radius are 50nm∼650 nm, respectively. The diffraction efficiency decreases significantly in the wavelength range of 1.9-2.5 µm with the increase of Poisson burr height and blaze surface roughness, and its effect on the diffraction efficiency can be neglected when the Poisson burr height is less than 0.5 µm and the blaze surface roughness value is less than RMS 1 nm. The machining error, surface defect, and surface roughness models of the convex blazed grating are optimized to provide a comprehensive machining accuracy basis for ultra-precision cutting of convex grating components.

4.
Appl Opt ; 62(6): 1616-1627, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821327

RESUMO

To realize the flow visualization of shock train structures by Schlieren measurements in a square-to-circular transition isolator, a high-precision conformal optical window was manufactured by fly-cutting technology. According to the light refraction principle, the window's outer surface was iteratively optimized based on the super-elliptic curves of the internal flow channel. Through tolerance analysis and processing parameter optimization, the transmitted wavefront error (RMS value) of the finished window was 0.823λ (λ=632.8n m). Based on a z-type Schlieren apparatus, the high-precision Schlieren measurements were conducted through the window and processed by an image filtering process method. The results promote high-precision Schlieren observation towards square-to-circular transition isolators.

5.
Opt Express ; 30(21): 39188-39206, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258465

RESUMO

The surface figure accuracy requirement of cylindrical surfaces widely used in rotors of gyroscope, spindles of ultra-precision machine tools and high-energy laser systems is nearly 0.1 µm. Cylindricity measuring instrument that obtains 1-D profile result cannot be utilized for deterministic figuring methods. Interferometric stitching test for cylindrical surfaces utilizes a CGH of which the system error will accumulated to unacceptable extent for large aperture/angular aperture that require many subapertures. To this end, a self-calibration interferometric stitching method for cylindrical surfaces is proposed. The mathematical model of cylindrical surface figure and the completeness condition of self-calibration stitching test of cylindrical surfaces were analyzed theoretically. The effects of shear/stitching motion error and the subapertures lattice on the self-calibration test results were analyzed. Further, a self-calibration interferometric stitching algorithm that can theoretically recover all the necessary components of the system error for testing cylindrical surfaces was proposed. Simulations and experiments on a shaft were conducted to validate the feasibility.

6.
Appl Opt ; 61(13): 3542-3549, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256391

RESUMO

With the application spectrum moving from infrared to visible light, aluminum optics with complex forms are difficult to fabricate by the majority of existing processing methods. Possessing the highest machining precision and low processing contamination, ion beam figuring (IBF) is a better method for fabrication of aluminum optics. However, the surface roughness deteriorates with the removal depth during IBF. In this study, the extra material removal during the IBF process is studied systematically. Extra material removal consists of two parts, determined by the convolution process and the limitation of the dynamic performance of machining tools. Extra material removal can be reduced by filtering out the surface residual error with a spatial frequency higher than the cut-off frequency and reducing the iterations of the machining process. Then, the executability of the dwell time matrix and the figuring ability of the removal function are analyzed. Adjusting the working parameters (volume removal rate) reduces the requirements for dynamic performance of machining tools. Finally, a minimal material removal processing strategy for aluminum optics based on power spectral density analysis and a spatial frequency filtering method is proposed. A simulation is conducted to verify the feasibility of the proposed strategy. With the same final precision (59.8 nm PV and 4.4 nm RMS), the maximum material removal decreases nearly 36 nm by applying the strategy, which reduces roughness nearly 10 nm. This study promotes the application of IBF in the field of aluminum optics fabrication as well as improves the machining precision of aluminum optics.

7.
Appl Opt ; 61(21): 6289-6296, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256243

RESUMO

In order to perform the flow visualization of a shock train structure by the schlieren imaging method in the cylindrical isolator, to the best of our knowledge, a novel integrative design and processing scheme of an aluminum alloy pipe with an acrylic conformal optical window pair are proposed. The optical ray tracing and wavefront correction methods were applied to design the inner cylindrical surfaces and outer aspherical cylindrical surfaces of the optical window pair for parallel light correction based on the conjoint analysis with the processing capability. Under the tolerance analysis and the optimization of the machining path, the integrative model was fabricated on a three-axis computer numerical control machine using two-axis turning and fast tool servo machining. The wavefront aberration (peak-to-valley value) and wavefront aberration (RMS) of the optical window pair were corrected within 12.189 and 2.658λ (λ=632.8nm) in the observation area which met the requirements of high-precision schlieren observation.

8.
Opt Express ; 29(6): 8951-8966, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820335

RESUMO

Aluminum optics are widely used in modern optical systems because of high specific stiffness and high reflectance. Magnetorheological finishing (MRF) provides a highly deterministic technology for high precision aluminum optics fabrication. However, the contamination layer will generate on the surface and bring difficulties for the subsequent processes, which highly limit the fabrication efficiency and precision. In this study, characteristics of the contamination layer and its formation process are firstly revealed through experimental and theoretical methods. Impurities such as abrasives are embedded into the aluminum substrate causing increasing surface hardness. The influence of the contaminant layer on machining accuracy and machining efficiency is analyzed in this study. Based on the analysis, ion beam sputtering (IBS) is induced as a contamination layer modification method. Impurities will be preferential sputtered during the process. Surface hardness and brightness will restore to the state before MRF. Moreover, the thickness of the contamination layer reduces dynamically during IBS because of the bombardment-induced Gibbsian segregation and sputter yield amplification mechanism. Consequently, we proposed a combined technique that includes MRF, IBS and smoothing polishing. Comparative experiments are performed on an elliptical shape plane surface. The results indicate that the efficiency has been increased sevenfold and surface precision is also highly improved. Our research will promote the application of aluminum optics to the visible and even ultraviolet band.

9.
Opt Express ; 29(3): 3738-3753, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770967

RESUMO

Single point diamond turning (SPDT) is highly versatile in fabricating axially symmetric form, non-axially-symmetric form and free form surfaces. However, inevitable microstructure known as turning marks left on the surface have limited the mirror's optical performance. Based on chemical mechanical polishing (CMP) mechanism, smoothing polishing (SP) process is believed to be an effective method to remove turning marks. However, the removal efficiency is relatively low. In this paper, based on Greenwood-Williamson (GW) theory, the factors that limit removal efficiency of SP are discussed in details. Influences of process parameters (work pressure and rotational speed) are firstly discussed. With further analysis, surface spectral characteristics are identified as the inherent factor affecting further efficiency improvement. According to theoretical analysis, the removal efficiency of isotropic surface is nearly 1.8 times higher than anisotropy surface like surface with turning marks. A high efficiency turning marks removal process combining ion beam sputtering (IBS) and SP is proposed in our research. With removal depth exceeding 100 nm, the isotropic aluminum surface can be constructed by IBS so that the efficiency of SP process can be greatly improved. Though deteriorated by IBS, the surface roughness will be rapidly reduced by SP process. Finally, experiments are conducted to verify our analysis. A 3.7 nm roughness surface without turning marks is achieved by new method while direct SP can only reach roughness of 4.3 nm with evident turning marks. Experimental results show that removal efficiency nearly doubled which matches well with the theoretical analysis. Our research not only can be used as a high efficiency turning marks removal and surface quality improvement method but also can be a new method for high precision aluminum optics fabrication.

10.
Opt Express ; 29(18): 28886-28900, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34615009

RESUMO

Benefiting from high specific stiffness and high reflectance, aluminum optics with a complex surface profile are widely used in aerospace optical systems which have strict requirements for volume of the systems. Contact figuring polishing process provides highly deterministic technology for the fabrication of high precision aluminum optics. However, due to the high chemical activity of aluminum, the inevitable contamination layer will generate on the surface and bring difficulties for the subsequent processes, which greatly limit the fabrication precision. Ion beam figuring (IBF) is an effectively technology that can remove the contamination layer and improve surface quality. But, the surface profile may deteriorate during IBF. In this study, through experimental method, the nonuniformity of the contamination layer is found to be the inducer for deterioration and deviation of surface profile during IBF. The mapping between the characteristics of contamination layer and dwell time of contact polishing is studied. The thickness of the contamination layer will firstly increase with dwell time and stabilize to 120 nm when the dwell time exceeds a specific value. The variation of the IBF removal function with removal depth is also revealed through experimental and theoretical methods. Due to the dynamic variation of the composition in the contamination layer during IBF, the removal function increases with the removal depth and stabilizes when the depth exceeds 60 nm (the contamination layer is fully removed). Consequently, we propose two processing strategies to improve the aluminum optics fabrication process. Comparative experiments are performed on two off-axis aspherical surfaces. The results indicate that the surface profile can be stably maintained and improved during IBF processing based on the proposed strategies. Our research will significantly improve the fabrication precision of aluminum optics and promote the application of aluminum optics to the visible and even ultraviolet band.

11.
Opt Express ; 28(23): 34054-34068, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182883

RESUMO

Ultra-smooth surfaces with low contamination and little damage are a great challenge for aluminum optical fabrication. Ion beam sputtering (IBS) has obvious advantages of low contamination and non-contact that make it a perfect method for processing aluminum optics. However, the evolution laws of aluminum surface morphology are quite different from conventional amorphous materials, which affects the roughness change and needs systematic research. Thus, in this paper, the roughness evolution of an aluminum optical surface (i.e., aluminum mirror) subjected to IBS has been studied with experimental and theoretical methods. The surface morphology evolution mechanisms of turning marks and second phase during IBS are revealed. The newly emerging relief morphology and its evolution mechanism are studied in depth. The experimental results find that IBS causes the coarsening of optical surfaces and the appearance of microstructures, leading to the surface quality deterioration. Turning marks have been through the process of deepening and vanish, while second phase generates microstructures on the original surface. The corresponding mechanism is discussed exhaustively. Preferential sputtering, curvature-dependent sputtering and material properties play important roles on surface quality deterioration. A modified roughness evolution mechanism and an improved binary sputtering theory are proposed to describe the polycrystalline sputtering phenomena. The current research can provide a guidance for the application of IBS in aluminum optics manufacture fields.

12.
Appl Opt ; 59(27): 8335-8341, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976419

RESUMO

At present, aluminum-based optical payloads are widely used in the aviation and aerospace field, and the demand for aluminum mirrors has become increasingly urgent in the visible light region. The main processing of an aluminum alloy mirror involves single-point diamond turning followed by a combined polishing process. Among these processes, magnetorheological finishing (MRF) is an important method for improving a surface figure. During the MRF process, excessive impurity contaminants are introduced into the surface of the aluminum mirror, thereby reducing surface reflectivity. In this paper, theoretical analysis and time-of-flight secondary ion mass spectrometry depth profiling were used to obtain the cause of pollution, and the process scheme of femtosecond laser cleaning was proposed. After verifying the feasibility, a new, to the best of our knowledge, process route was implemented on a Φ50mm aluminum mirror. Finally, the surface figure of RMS 0.022λ and the surface roughness of Ra 3.24 nm were obtained. In addition, reflectance in the visible light and near-infrared bands has increased by about 50%.

13.
Appl Opt ; 58(22): 6091-6097, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503932

RESUMO

Owing to its material properties, aluminum-based optical loads are widely used in the aerospace field. At present, the main processing of an aluminum alloy mirror is single-point diamond turning followed by the combined polishing process. The surface will generate some white crystals during the chemical mechanical polishing process (CMP). These crystals can affect the improvement of surface quality and seriously reduce the processing efficiency of the whole process. In view of the above problems, four main factors of crystallization are obtained by interface theoretical analysis, Visual MINTEQ simulation of chemical morphological distribution, and experimental analysis. They are temperature, PH value of polishing fluid, solid-liquid contact angle, and impurity content of aluminum alloy. The crystallization phenomenon in the polishing process is successfully suppressed by improving the polishing process and selecting new materials. The experimental results showed that the surface roughness decreased from 7.21 to 2.98 nm without crystallization using the new method.

14.
Appl Opt ; 57(21): 6102-6109, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117991

RESUMO

The correction accuracy of a pint-sized unimorph deformable mirror (DM) is significantly influenced by the nonlinear hysteresis error of piezoelectric ceramics, especially in an open-loop state. Moreover, the control bandwidth is also reduced by the nonlinearity. In this paper, we fabricated a three-unit pint-sized unimorph DM with strain gauges integrated on the actuators as a feedback layer for the first time. An experimental platform was built and utilized to test each electrode's strain signal. Testing results show that, under quasi-static condition, the hysteresis curve of the mirror's central displacement is corrected and the hysteresis rate could be reduced from 11% to less than 2% by adopting the strain feedback signal. More specifically, the DM's initial surface, Zernike defocus, together with spherical aberration can also be corrected by this method, and the correction accuracy is improved more than 20% compared to the open-loop state. By introducing a closed-loop control the gaps of the DMs under open loop are supplied. This demonstrates that adding a strain feedback layer is promising to enhance the performance of a unimorph DM.

15.
Appl Opt ; 57(34): 9913-9921, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645246

RESUMO

A computer-generated hologram (CGH) is the core component for an aspheric surface test. According to fabrication demands, it is necessary to convert the designed CGH phase compensation function into the processed pattern, that is, the fringe discretization process. In this paper, we propose a new discretization method for a CGH in a test of the freeform surface, and realized the encoding of processed fringes by MATLAB software. Furthermore, we designed the experiment to verify the accuracy of the new discretization method and compared the calculation efficiency between the new algorithm and the reported algorithm. Finally, based on the testing requirement of a freeform mirror in a camera optical system, we completed the design, encoding, and fabrication of the CGH sample, and analyzed the influence of various errors on wavefront accuracy of the CGH.

16.
Opt Express ; 22(11): 13951-61, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921586

RESUMO

Material removal rate has greatly relied on the distribution of shear stress and dynamic pressure on the workpiece surface in hydrodynamic effect polishing (HEP). Fluid dynamic simulation results demonstrate that the higher rotation speed and smaller clearance will cause the larger material removal rate. Molecular dynamic (MD) calculations show the bonding energy of Si-O in the silicon-oxide nanoparticle is stronger than that in the quartz glass, and therefore the atoms can be dragged away from the quartz glass surface by the adsorbed silicon-oxide nanoparticle. The deep subsurface damage cannot be efficiently removed by HEP due to its extremely low removal rate. However, the subsurface damaged layer can be quickly removed by ion beam figuring (IBF), and a thinner layer containing the passivated scratches and pits will be left on the surface. The passivated layer is so thin that can be easily removed by HEP process with a low material rate under the large wheel-workpiece clearance. Combined with the IBF process, the subsurface damage and surface scratches have been efficiently removed after the HEP process. Meanwhile there are not obvious duplicated marks on the processed surface and the surface roughness has been improved to 0.130nm rms, 0.103nm Ra.

17.
Appl Opt ; 53(29): 6913-9, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25322398

RESUMO

Hydrodynamic effect polishing (HEP), a noncontact machining process, can realize the processed surface roughness as small as atomic level. To investigate the subsurface structure, the HEP processed quartz glass surface was etched by the hydrofluoric acid solution. It has been proved that HEP is a polishing method with the ability to process the surface with atomic-level flatness and damage-free surface/subsurface. It has been found that the microplastic scratches on the lap prepolished glass were obviously exposed when the thin redeposition layer was removed. Then the scratches were gradually removed and surface roughness decreased quickly as the removal depth increased. The surface becomes very smooth and the surface roughness maintains at an atomic level when the subsurface damage is removed clearly. The experimental results demonstrated that the defects such as the scratches parallel to the rotational axis of the wheel were firstly removed during the polishing process, and then the defects vertical to the wheel rotational axis were removed.

18.
Micromachines (Basel) ; 15(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337814

RESUMO

Magnetorheological finishing (MRF) of aspherical optical elements usually requires the coordination between the translational axes and the oscillating axes of the machine tool to realize the processing. For aspheric optical elements whose steepness exceeds the machining stroke of the equipment, there is still no better method to achieve high-precision and high-efficiency error convergence. To solve this problem, an MRF method combining virtual-axis technology and a spiral scanning path is proposed in this paper. Firstly, the distribution law of the magnetic induction intensity inside the polishing wheel is analyzed by simulation, the stability of the removal efficiency of the removal function within the ±7∘ angle of the normal angle of the polishing wheel is determined, and MRF is expanded from traditional single-point processing to circular arc segment processing. Secondly, the spiral scanning path is proposed for aspherical rotational symmetric optical elements, which can reduce the requirements of the number of machine tool axes and the dynamic performance of machine tools. Finally, an aspherical fused silica optical element with a curvature radius of 400 mm, K value of -1, and aperture of 100 mm is processed. The PV value of this optical element converges from 189.2 nm to 24.85 nm, and the RMS value converges from 24.85 nm to 5.74 nm. The experimental results show that the proposed combined process has the ability to modify curved optical elements and can be applied to ultra-precision machining of high-steepness optical elements.

19.
Opt Express ; 21(22): 26123-35, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216836

RESUMO

Combination of the oxidation of reaction-sintered silicon carbide (RS-SiC) and the polishing of the oxide is an effective way of machining RS-SiC. In this study, anodic oxidation, thermal oxidation, and plasma oxidation were respectively conducted to obtain oxides on RS-SiC surfaces. By performing scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX) analysis and scanning white light interferometry (SWLI) measurement, the oxidation behavior of these oxidation methods was compared. Through ceria slurry polishing, the polishing properties of the oxides were evaluated. Analysis of the oxygen element on polished surfaces by SEM-EDX was conducted to evaluate the remaining oxide. By analyzing the three oxidation methods with corresponding polishing process on the basis of schematic diagrams, suitable application conditions for these methods were clarified. Anodic oxidation with simultaneous polishing is suitable for the rapid figuring of RS-SiC with a high material removal rate; polishing of a thermally oxidized surface is suitable for machining RS-SiC mirrors with complex shapes; combination of plasma oxidation and polishing is suitable for the fine finishing of RS-SiC with excellent surface roughness. These oxidation methods are expected to improve the machining of RS-SiC substrates and promote the application of RS-SiC products in the fields of optics, molds, and ceramics.

20.
Opt Express ; 21(12): 14780-8, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787665

RESUMO

An ultrasmooth reaction-sintered silicon carbide surface with an rms roughness of 0.424 nm is obtained after thermal oxidation for 30 min followed by ceria slurry polishing for 30 min. By SEM-EDX analysis, we investigated the thermal oxidation behavior of RS-SiC, in which the main components are Si and SiC. As the oxidation rate is higher in the area with defects, there are no scratches or cracks on the surface after oxidation. However, a bumpy structure is formed after oxidation because the oxidation rates of Si and SiC differ. Through a theoretical analysis of thermal oxidation using the Deal-Grove model and the removal of the oxide layer by ceria slurry polishing in accordance with the Preston equation, a model for obtaining an ultrasmooth surface is proposed and the optimal processing conditions are presented.


Assuntos
Compostos Inorgânicos de Carbono/química , Calefação/métodos , Lentes , Compostos de Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA