Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(2): 514-526.e13, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585085

RESUMO

Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.


Assuntos
Encéfalo/fisiologia , Ritmo Delta , Consolidação da Memória/fisiologia , Sono/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans
2.
J Neuroeng Rehabil ; 18(1): 89, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039346

RESUMO

BACKGROUND: Cerebellar electrical stimulation has shown promise in improving motor recovery post-stroke in both rodent and human studies. Past studies have used motor evoked potentials (MEPs) to evaluate how cerebellar stimulation modulates ongoing activity in the cortex, but the underlying mechanisms are incompletely understood. Here we used invasive electrophysiological recordings from the intact and stroke-injured rodent primary motor cortex (M1) to assess how epidural cerebellar stimulation modulates neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. METHODS: We recorded single unit spiking and local field potentials (LFPs) in both the intact and acutely stroke-injured M1 contralateral to the stimulated cerebellum in adult Long-Evans rats under anesthesia. We analyzed changes in the firing rates of single units, the extent of synchronous spiking and power spectral density (PSD) changes in LFPs during and post-stimulation. RESULTS: Our results show that post-stimulation, the firing rates of a majority of M1 neurons changed significantly with respect to their baseline rates. These firing rate changes were diverse in character, as the firing rate of some neurons increased while others decreased. Additionally, these changes started to set in during stimulation. Furthermore, cross-correlation analysis showed a significant increase in coincident firing amongst neuronal pairs. Interestingly, this increase in synchrony was unrelated to the direction of firing rate change. We also found that neuronal ensembles derived through principal component analysis were more active post-stimulation. Lastly, these changes occurred without a significant change in the overall spectral power of LFPs post-stimulation. CONCLUSIONS: Our results show that cerebellar stimulation caused significant, long-lasting changes in the activity patterns of M1 neurons by altering firing rates, boosting neural synchrony and increasing neuronal assemblies' activation strength. Our study provides evidence that cerebellar stimulation can directly modulate cortical dynamics. Since these results are present in the perilesional cortex, our data might also help explain the facilitatory effects of cerebellar stimulation post-stroke.


Assuntos
Cerebelo/fisiopatologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Eletrocorticografia , Potencial Evocado Motor/fisiologia , Masculino , Ratos , Ratos Long-Evans
3.
J Neuroeng Rehabil ; 16(1): 59, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126339

RESUMO

BACKGROUND: Repetitive somatosensory electrical stimulation (SES) of forelimb peripheral nerves is a promising therapy; studies have shown that SES can improve motor function in stroke subjects with chronic deficits. However, little is known about how SES can directly modulate neural dynamics. Past studies using SES have primarily used noninvasive methods in human subjects. Here we used electrophysiological recordings from the rodent primary motor cortex (M1) to assess how SES affects neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. METHODS: We performed acute extracellular recordings in 7 intact adult Long Evans rats under ketamine-xylazine anesthesia while they received transcutaneous SES. We recorded single unit spiking and local field potentials (LFP) in the M1 contralateral to the stimulated arm. We then compared neural firing rate, spike-field coherence (SFC), and power spectral density (PSD) before and after stimulation. RESULTS: Following SES, the firing rate of a majority of neurons changed significantly from their respective baseline values. There was, however, a diversity of responses; some neurons increased while others decreased their firing rates. Interestingly, SFC, a measure of how a neuron's firing is coupled to mesoscale oscillatory dynamics, increased specifically in the δ-band, also known as the low frequency band (0.3- 4 Hz). This increase appeared to be driven by a change in the phase-locking of broad-spiking, putative pyramidal neurons. These changes in the low frequency range occurred without a significant change in the overall PSD. CONCLUSIONS: Repetitive SES significantly and persistently altered the local cortical dynamics of M1 neurons, changing both firing rates as well as the SFC magnitude in the δ-band. Thus, SES altered the neural firing and coupling to ongoing mesoscale dynamics. Our study provides evidence that SES can directly modulate cortical dynamics.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Estimulação Elétrica , Humanos , Masculino , Córtex Motor/fisiologia , Ratos , Ratos Long-Evans
4.
PLoS Biol ; 13(9): e1002263, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382320

RESUMO

Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Sono/fisiologia , Animais , Masculino , Consolidação da Memória , Neurônios/fisiologia , Ratos Long-Evans
5.
J Neurosci ; 35(22): 8653-61, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041930

RESUMO

Intracortical brain-machine interfaces (BMIs) may eventually restore function in those with motor disability after stroke. However, current research into the development of intracortical BMIs has focused on subjects with largely intact cortical structures, such as those with spinal cord injury. Although the stroke perilesional cortex (PLC) has been hypothesized as a potential site for a BMI, it remains unclear whether the injured motor cortical network can support neuroprosthetic control directly. Using chronic electrophysiological recordings in a rat stroke model, we demonstrate here the PLC's capacity for neuroprosthetic control and physiological plasticity. We initially found that the perilesional network demonstrated abnormally increased slow oscillations that also modulated neural firing. Despite these striking abnormalities, neurons in the perilesional network could be modulated volitionally to learn neuroprosthetic control. The rate of learning was surprisingly similar regardless of the electrode distance from the stroke site and was not significantly different from intact animals. Moreover, neurons achieved similar task-related modulation and, as an ensemble, formed cell assemblies with learning. Such control was even achieved in animals with poor motor recovery, suggesting that neuroprosthetic control is possible even in the absence of motor recovery. Interestingly, achieving successful control also reduced locking to abnormal oscillations significantly. Our results thus suggest that, despite the disrupted connectivity in the PLC, it may serve as an effective target for neuroprosthetic control in those with poor motor recovery after stroke.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/fisiopatologia , Destreza Motora/fisiologia , Neurônios/fisiologia , Acidente Vascular Cerebral/patologia , Análise de Variância , Animais , Interfaces Cérebro-Computador , Masculino , Córtex Motor/patologia , Ratos , Ratos Long-Evans , Interface Usuário-Computador
6.
J Neurosci ; 34(37): 12353-67, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209276

RESUMO

Neocortical population activity varies between deactivated and activated states marked by the presence and absence of slow oscillations, respectively. Neocortex activation occurs during waking and vigilance and is readily induced in anesthetized animals by stimulating the brainstem reticular formation, basal forebrain, or thalamus. Neuromodulators are thought to be responsible for these changes in cortical activity, but their selective cortical effects (i.e., without actions in other brain areas) on neocortical population activity in vivo are not well defined. We found that selective cholinergic and noradrenergic stimulation of the barrel cortex produces well differentiated activated states in rats. Cholinergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations and shifting firing to a tonic mode, which increases in rate at high doses. This shift causes the sensory thalamus itself to become activated. In contrast, noradrenergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations but suppresses overall cortical firing rate, which deactivates the thalamus. Cortical activation produced by either of these neuromodulators leads to suppressed sensory responses and more focused receptive fields. High-frequency sensory stimuli are best relayed to barrel cortex during cortical cholinergic activation because this also activates the thalamus. Cortical neuromodulation sets different cortical and thalamic states that may serve to control sensory information processing according to behavioral contingencies.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Adrenérgicos/fisiologia , Neurônios Colinérgicos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Neocórtex/fisiologia , Neurotransmissores/administração & dosagem , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Masculino , Neocórtex/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tálamo/efeitos dos fármacos
7.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641414

RESUMO

Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several brain regions with two important areas being the motor cortex (M1) and the cerebellum (CB). However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded an activity from the M1 and cerebellar cortex in eight rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and CB spindles, and this spiking occurred at a preferred phase of the spindle. On average, M1 and CB neurons showed most spiking at the M1 or CB spindle peaks. These neurons also developed a preferential phase locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase locking was not significant for cerebellar neurons when compared with CB spindles. Additionally, we found that the percentage of task-modulated cells in the M1 and CB that fired with nonuniform spike phase distribution during M1/CB spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle band LFP coherence (for M1 and CB LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and CB recruit neurons that participate in the awake task to support motor memory consolidation.


Assuntos
Potenciais de Ação , Córtex Motor , Neurônios , Sono , Animais , Córtex Motor/fisiologia , Masculino , Neurônios/fisiologia , Sono/fisiologia , Ratos , Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Ratos Sprague-Dawley , Ratos Long-Evans , Córtex Cerebelar/fisiologia
8.
Sci Adv ; 10(15): eadm8246, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608024

RESUMO

Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned a neuroprosthetic/brain-machine interface (BMI) task. In neuroprosthetic task, actuator movements are causally linked to M1 "direct" neurons that drive the decoder for successful task execution. However, it is unknown how task-related M1 activity interacts with the cerebellum. We observed a notable 3 to 6 hertz coherence that emerged between these regions' local field potentials (LFPs) with learning that also modulated task-related spiking. We identified robust task-related indirect modulation in the cerebellum, which developed a preferential relationship with M1 task-related activity. Inhibiting cerebellar cortical and deep nuclei activity through optogenetics led to performance impairments in M1-driven neuroprosthetic control. Together, these results demonstrate that cerebellar influence is necessary for M1-driven neuroprosthetic control.


Assuntos
Interfaces Cérebro-Computador , Cerebelo , Animais , Ratos , Núcleo Celular , Aprendizagem , Movimento
9.
medRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37205348

RESUMO

Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.

10.
Front Neurol ; 14: 1243575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099067

RESUMO

Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.

11.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750360

RESUMO

The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats, which revealed the emergence of coordinated movement-related activity in the local-field potentials as the reaching skill consolidated. Interestingly, we found this emergent activity only in the rats that gained expertise in the task. We found that the local and cross-area spiking activity was coordinated with LFOs in proficient rats. Finally, we also found that these neural dynamics were more prominently expressed during accurate behavior in the M1. This work furthers our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of precise skilled movement.


Assuntos
Aprendizagem , Destreza Motora , Ratos , Animais , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Cerebelo/fisiologia , Movimento/fisiologia
12.
Nat Med ; 24(8): 1257-1267, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915259

RESUMO

Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation.


Assuntos
Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Membro Anterior/fisiopatologia , Humanos , Masculino , Ratos Long-Evans , Córtex Sensório-Motor/fisiopatologia , Análise e Desempenho de Tarefas
13.
Nat Neurosci ; 20(9): 1277-1284, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692062

RESUMO

A fundamental goal of motor learning is to establish the neural patterns that produce a desired behavioral outcome. It remains unclear how and when the nervous system solves this 'credit assignment' problem. Using neuroprosthetic learning, in which we could control the causal relationship between neurons and behavior, we found that sleep-dependent processing was required for credit assignment and the establishment of task-related functional connectivity reflecting the casual neuron-behavior relationship. Notably, we observed a strong link between the microstructure of sleep reactivations and credit assignment, with downscaling of non-causal activity. Decoupling of spiking to slow oscillations using optogenetic methods eliminated rescaling. Thus, our results suggest that coordinated firing during sleep is essential for establishing sparse activation patterns that reflect the causal neuron-behavior relationship.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Masculino , Optogenética/métodos , Ratos , Ratos Long-Evans
14.
Ann Clin Transl Neurol ; 3(12): 956-961, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28097208

RESUMO

Movements can be factored into modules termed "muscle synergies". After stroke, abnormal synergies are linked to impaired movements; however, their neural basis is not understood. In a single subject, we examined how electrocorticography signals from the perilesional cortex were associated with synergies. The measured synergies contained a mix of both normal and abnormal patterns and were remarkably similar to those described in past work. Interestingly, we found that both normal and abnormal synergies were correlated with perilesional high gamma. Given the link between high gamma and cortical spiking, our results suggest that perilesional spiking may organize synergies after stroke.

15.
J Neurosci Methods ; 246: 30-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769277

RESUMO

BACKGROUND: Rodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive measure of distal limb function, it is also known to be very labor-intensive, both for initial training and the daily assessment of function. NEW METHOD: Using components developed by open-source electronics platforms, we have designed and tested a low-cost automated behavioral box to measure forelimb function in rats. Our apparatus, made primarily of acrylic, was equipped with multiple sensors to control the duration and difficulty of the task, detect reach outcomes, and dispense pellets. Our control software, developed in MATLAB, was also used to control a camera in order to capture and process video during reaches. Importantly, such processing could monitor task performance in near real-time. RESULTS: We further demonstrate that the automated apparatus can be used to expedite skill acquisition, thereby increasing throughput as well as facilitating studies of early versus late motor learning. The setup is also readily compatible with chronic electrophysiological monitoring. COMPARISON WITH EXISTING METHODS: Compared to a previous version of this task, our setup provides a more efficient method to train and test rodents for studies of motor learning and recovery of function after stroke. The unbiased delivery of behavioral cues and outcomes also facilitates electrophysiological studies. CONCLUSIONS: In summary, our automated behavioral box will allow high-throughput and efficient monitoring of rat forelimb function in both healthy and injured animals.


Assuntos
Comportamento Animal/fisiologia , Membro Anterior/fisiologia , Córtex Motor/fisiologia , Reconhecimento Automatizado de Padrão , Desempenho Psicomotor/fisiologia , Análise de Variância , Animais , Condicionamento Operante , Comportamento Alimentar/fisiologia , Masculino , Ratos , Ratos Long-Evans
16.
Nat Neurosci ; 17(8): 1107-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997761

RESUMO

Brain-machine interfaces can allow neural control over assistive devices. They also provide an important platform for studying neural plasticity. Recent studies have suggested that optimal engagement of learning is essential for robust neuroprosthetic control. However, little is known about the neural processes that may consolidate a neuroprosthetic skill. On the basis of the growing body of evidence linking slow-wave activity (SWA) during sleep to consolidation, we examined whether there is 'offline' processing after neuroprosthetic learning. Using a rodent model, we found that, after successful learning, task-related units specifically experienced increased locking and coherency to SWA during sleep. Moreover, spike-spike coherence among these units was substantially enhanced. These changes were not present with poor skill acquisition or after control awake periods, demonstrating the specificity of our observations to learning. Notably, the time spent in SWA predicted the performance gains. Thus, SWA appears to be involved in offline processing after neuroprosthetic learning.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Masculino , Microeletrodos , Córtex Motor/citologia , Córtex Motor/cirurgia , Próteses Neurais/normas , Neurônios/citologia , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Long-Evans , Análise e Desempenho de Tarefas
17.
J Neural Eng ; 10(4): 045001, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23723128

RESUMO

OBJECTIVE: To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. APPROACH: We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. MAIN RESULTS: Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. SIGNIFICANCE: Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.


Assuntos
Potenciais de Ação/fisiologia , Técnicas de Diagnóstico Neurológico/instrumentação , Eletrodos Implantados , Microeletrodos , Monitorização Ambulatorial/instrumentação , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Animais , Módulo de Elasticidade , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Análise em Microsséries/instrumentação , Rana catesbeiana , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA