Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.272
Filtrar
1.
Nature ; 631(8021): 531-536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020034

RESUMO

The pursuit of discovering new high-temperature superconductors that diverge from the copper-based model1-3 has profound implications for explaining mechanisms behind superconductivity and may also enable new applications4-8. Here our investigation shows that the application of pressure effectively suppresses the spin-charge order in trilayer nickelate La4Ni3O10-δ single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The d.c. susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a strange metal behaviour, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin-charge order, flat band structures, interlayer coupling, strange metal behaviour and high-temperature superconductivity.

2.
Nature ; 608(7921): 69-73, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922500

RESUMO

Pressure-driven membranes is a widely used separation technology in a range of industries, such as water purification, bioprocessing, food processing and chemical production1,2. Despite their numerous advantages, such as modular design and minimal footprint, inevitable membrane fouling is the key challenge in most practical applications3. Fouling limits membrane performance by reducing permeate flux or increasing pressure requirements, which results in higher energetic operation and maintenance costs4-7. Here we report a hydraulic-pressure-responsive membrane (PiezoMem) to transform pressure pulses into electroactive responses for in situ self-cleaning. A transient hydraulic pressure fluctuation across the membrane results in generation of current pulses and rapid voltage oscillations (peak, +5.0/-3.2 V) capable of foulant degradation and repulsion without the need for supplementary chemical cleaning agents, secondary waste disposal or further external stimuli3,8-13. PiezoMem showed broad-spectrum antifouling action towards a range of membrane foulants, including organic molecules, oil droplets, proteins, bacteria and inorganic colloids, through reactive oxygen species (ROS) production and dielectrophoretic repulsion.

3.
J Immunol ; 212(10): 1589-1601, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558134

RESUMO

Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.


Assuntos
Ativação do Complemento , Camundongos Endogâmicos C57BL , Animais , Camundongos , Humanos , Ativação do Complemento/imunologia , Linhagem Celular Tumoral , Fator H do Complemento/imunologia , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Autoanticorpos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Linfócitos T Reguladores/imunologia
4.
Nature ; 577(7790): 386-391, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875851

RESUMO

The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres1. Local cortical dynamics are thought to shape these patterns throughout movement execution2-4. External inputs have been implicated in setting the initial state of the motor cortex5,6, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.


Assuntos
Córtex Motor/fisiologia , Movimento , Animais , Comportamento Animal , Feminino , Masculino , Camundongos , Tálamo/fisiologia
5.
Plant Physiol ; 194(4): 2472-2490, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38217865

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Prunus persica , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Parede Celular/genética , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo
6.
Nano Lett ; 24(3): 993-1000, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190333

RESUMO

Emergent phenomena in exfoliated layered transition metal compounds have attracted much attention in the past several years. Especially, pursuing a ferromagnetic insulator is one of the exciting goals for stimulating a high-performance magnetoelectrical device. Here, we report the transition from a metallic to high-Tc semiconductor-like ferromagnet in thinned Fe3GaTe2, accompanied with competition among various magnetic interactions. As evidenced by critical exponents, Fe3GaTe2 is the first layered ferromagnet described by a 3D Ising model coupled with long-range interactions. An extra magnetic phase from competition between ferromagnetism and antiferromagnetism emerges at a low field below Tc. Upon reducing thickness, the Curie temperature (Tc) monotonically decreases from 342 K for bulk to 200 K for 1-3 nm flakes, which is the highest Tc reported as far as we know. Furthermore, a semiconductor-like behavior has been observed in such 1-3 nm flakes. Our results highlight the importance of Fe3GaTe2 in searching for ferromagnetic insulators, which may benefit spintronic device fabrication.

7.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775232

RESUMO

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Assuntos
Encéfalo , Pontos Quânticos , Pontos Quânticos/química , Encéfalo/diagnóstico por imagem , Fótons , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Cádmio/química , Sulfetos/química , Camundongos , Compostos de Zinco/química , Telúrio/química , Compostos de Selênio/química , Humanos
8.
Nano Lett ; 24(32): 9832-9838, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101565

RESUMO

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.

9.
J Cell Mol Med ; 28(16): e70005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159135

RESUMO

The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.


Assuntos
Fibrilação Atrial , Cálcio , Átrios do Coração , Camundongos Knockout , Miócitos Cardíacos , Fatores de Transcrição , Animais , Miócitos Cardíacos/metabolismo , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/genética , Cálcio/metabolismo , Átrios do Coração/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sinalização do Cálcio , Potenciais de Ação , Potenciais da Membrana , Masculino
10.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593470

RESUMO

The quest for high-performance piezoelectric materials has been synonymous with the pursuit of the morphotropic phase boundary (MPB), yet the full potential of MPBs remains largely untapped outside of the realm of ferroelectrics. In this study, we reveal a new class of MPB by creating continuous molecular-based solid solutions between centro- and noncentrosymmetric compounds, exemplified by (tert-butylammonium)1-x(tert-amylammonium)xFeCl4 (0 ≤ x ≤ 1), where the MPB is formed due to disorder of molecular cations. Near the MPB, we discovered an exceptionally sensitive nonlinear optical material in the centrosymmetric phase, capable of activation at pressures as low as 0.12-0.27 GPa, and producing tunable second-harmonic generation (SHG) signals from zero to 18.8 times that of KH2PO4 (KDP). Meanwhile, synchrotron diffraction experiments have unveiled a third competing phase (P212121) appearing at low pressure, forming a triple-phase point near the MPB, thereby providing insight into the mechanism underpinning the nonlinear optical (NLO) switch behavior. These findings highlight the opportunity to harness exceptional physical properties in symmetry-breaking solid solution systems by strategically designing novel MPBs.

11.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987557

RESUMO

Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.


Assuntos
Clorófitas , Uso do Códon , Fosfatos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Códon/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Biossíntese de Proteínas
12.
Genome Res ; 31(4): 592-606, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687945

RESUMO

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Genoma de Planta/genética , Genômica , Prunus persica/genética
13.
BMC Biotechnol ; 24(1): 12, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454400

RESUMO

OBJECTIVE: The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The test results were also used for clinical aging research. METHODS: Human plasma samples were incubated with aqueous perfluorovaleric acid (NFPA), succeeded by precipitation utilizing trichloroacetic acid, hydrolysis facilitated by hydrochloric acid, nitrogen drying, and ultimate re-dissolution utilizing NFPA, followed by filtration. Cotinine-D3 was added as an internal standard. The separation was performed on an Agela Venusil ASB C18 column (50 mm × 4.6 mm, 5 µm) with a 5 mmol/L NFPA and acetonitrile/water of 60:40 (v/v) containing 0.15% formic acid. The multiple reaction monitoring mode was used for detecting CML, CEL, and cotinine-D3, with ion pairs m/z 205.2 > 84.1 (for quantitative) and m/z 205.2 > m/z 130.0 for CML, m/z 219.1 > 84.1 (for quantitative) and m/z 219.1 > m/z 130.1 for CEL, and m/z 180.1 > 80.1 for cotinine-D3, respectively. RESULTS: The separation of CML and CEL was accomplished within a total analysis time of 6 minutes. The retention times of CML, CEL, and cotinine-D3 were 3.43 minutes, 3.46 minutes, and 4.50 minutes, respectively. The assay exhibited linearity in the concentration range of 0.025-1.500 µmol/L, with a lower limit of quantification of 0.025 µmol/L for both compounds. The relative standard deviations of intra-day and inter-day were both below 9%, and the relative errors were both within the range of ±4%. The average recoveries were 94.24% for CML and 97.89% for CEL. CONCLUSION: The results indicate that the developed methodology is fast, highly sensitive, highly specific, reproducible, and suitable for the rapid detection of CML and CEL in clinical human plasma samples. The outcomes of the clinical research project on aging underscored the important indicative significance of these two indicators for research on human aging.


Assuntos
Lisina , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Lisina/análise , Lisina/química , Cotinina , Gerociência , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/química , Cromatografia Líquida de Alta Pressão
14.
Radiology ; 311(1): e230459, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38563669

RESUMO

Background Microwave ablation (MWA) is currently under preliminary investigation for the treatment of multifocal papillary thyroid carcinoma (PTC) and has shown promising treatment efficacy. Compared with surgical resection (SR), MWA is minimally invasive and could preserve thyroid function. However, a comparative analysis between MWA and SR is warranted to draw definitive conclusions. Purpose To compare MWA and SR for preoperative US-detected T1N0M0 multifocal PTC in terms of overall and 1-, 3-, and 5-year progression-free survival rates and complication rates. Materials and Methods In this retrospective study, 775 patients with preoperative US-detected T1N0M0 multifocal PTC treated with MWA or SR across 10 centers between May 2015 and December 2021 were included. Propensity score matching (PSM) was performed for patients in the MWA and SR groups, followed by comparisons between the two groups. The primary outcomes were overall and 1-, 3-, and 5-year progression-free survival (PFS) rates and complication rates. Results After PSM, 229 patients (median age, 44 years [IQR 36.5-50.5 years]; 179 female) in the MWA group and 453 patients (median age, 45 years [IQR 37-53 years]; 367 female) in the SR group were observed for a median of 20 months (range, 12-74 months) and 26 months (range, 12-64 months), respectively. MWA resulted in less blood loss, shorter incision length, and shorter procedure and hospitalization durations (all P < .001). There was no evidence of differences in overall and 1-, 3-, or 5-year PFS rates (all P > .05) between MWA and SR (5-year rate, 77.2% vs 83.1%; P = .36) groups. Permanent hoarseness (2.2%, P = .05) and hypoparathyroidism (4.0%, P = .005) were encountered only in the SR group. Conclusion There was no evidence of a significant difference in PFS rates between MWA and SR for US-detected multifocal T1N0M0 PTC, and MWA resulted in fewer complications. Therefore, MWA is a feasible option for selected patients with multifocal T1N0M0 PTC. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Georgiades in this issue.


Assuntos
Micro-Ondas , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/cirurgia , Hospitalização , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia
15.
Small ; 20(42): e2403397, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38925625

RESUMO

To explore novel electrode materials with in-depth elucidation of initial coulombic efficiency (ICE), kinetics, and charge storage mechanisms is of great challenge for Na-ion storage. Herein, a novel 3D antiperovskite carbide Ni3ZnC0.7@rGO anode coupled with ether-based electrolyte is reported for fast Na-ion storage, exhibiting superior performance than ester-based electrolyte. Electrochemical tests and density functional theory (DFT) calculations show that Ni3ZnC0.7@rGO anode with ether-based electrolyte can promote charge/ion transport and lower Na+ diffusion energy barrier, thereby improving ICE, reversible capacity, rate, and cycling performance. Cross-sectional-morphology and depth profiling surface chemistry demonstrate that not only a thinner and more homogeneous reaction interface layer with less side effects but also a superior solid electrolyte interface (SEI) film with a high proportion of inorganic components are formed in the ether-based electrolyte, which accelerates Na+ transport and is the significant reason for the improvement of ICE and other electrochemical properties. Meanwhile, electrochemical and ex situ measurements have revealed conversion, alloying, and co-intercalation hybrid mechanisms of the Ni3ZnC0.7@rGO anode based on ether electrolyte. Interestingly, the Na-ion capacitors (SICs) designed by pairing with activated carbon (AC) cathode exhibit favorable electrochemical performance. Overall, this work provides deep insights on developing advanced materials for fast Na-ion storage.

16.
Small ; 20(43): e2403151, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934338

RESUMO

Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.

17.
J Transl Med ; 22(1): 308, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
18.
Insect Mol Biol ; 33(4): 350-361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38430546

RESUMO

Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.


Assuntos
Hemípteros , Proteínas de Insetos , Animais , Hemípteros/genética , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Interferência de RNA , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Microscopia Eletrônica de Varredura
19.
Opt Lett ; 49(13): 3656-3659, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950233

RESUMO

Steering multiple laser beams using spatial light modulators (SLMs) creates unwanted diffraction and reflections that are not modulated by the SLM, which can make beam tracking difficult. A novel, to the best of our knowledge, and simple beam steering methodology is proposed, which aims at reducing the influence of this clutter while maintaining tracking performance. The beam(s) are deliberately defocused before steering with a superposition of a phase ramp and Fresnel lens (PRFL) phase screen on the SLM. As a result, the non-modulated reflections and diffracted light are decreased in relative intensity to the steered beam, in turn allowing simple and standard peak intensity and center of gravity (CG) algorithms for tracking. Hardware demonstration shows tracking performance using the PRFL remained on-par with more complex filtering approaches while adding no additional hardware. This method has potential to improve the communication performance of multi-beam laser communication terminals.

20.
Chemistry ; : e202402872, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448543

RESUMO

Over the past three decades, significant advancements have been made in mutation enrichment methods, driven by the increasing need for precise and efficient identification of rare genetic variants associated with diseases. Mutation-enrichment methods have emerged to boost sensitivity and enable easy detection of low-frequency mutations. These methods are crucial in genomics research and clinical diagnostics, allowing for the detection of low-frequency mutations within large genomic datasets. This review presents a summary of technological developments in rare mutation enrichment and emphasizes their mechanisms and applications in liquid biopsies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA