Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Am J Pathol ; 194(6): 894-911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403164

RESUMO

Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggests that abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. Herein, a dehydroepiandrosterone-induced PCOS-like mouse model which has a similar metabolic and reproductive phenotype as human patients with PCOS was generated. It was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provide direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.


Assuntos
Metilação de DNA , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Metilação de DNA/genética , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Transcrição Gênica , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL
2.
J Cell Mol Med ; 28(4): e18145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332517

RESUMO

Base editors are emerging as powerful tools to correct single-nucleotide variants and treat genetic diseases. In particular, the adenine base editors (ABEs) exhibit robust and accurate adenine-to-guanidine editing capacity and have entered the clinical stage for cardiovascular therapy. Despite the tremendous progress using ABEs to treat heart diseases, a standard technical route toward successful ABE-based therapy remains to be fully established. In this study, we harnessed adeno-associated virus (AAV) and a mouse model carrying the cardiomyopathy-causing Lmna c.1621C > T mutation to demonstrate key steps and concerns in designing a cardiac ABE experiment in vivo. We found DeepABE as a reliable deep-learning-based model to predict ABE editing outcomes in the heart. Screening of sgRNAs for a Cas9 mutant with relieved protospacer adjacent motif (PAM) allowed the reduction of bystander editing. The ABE editing efficiency can be significantly enhanced by modifying the TadA and Cas9 variants, which are core components of ABEs. The ABE systems can be delivered into the heart via either dual AAV or all-in-one AAV vectors. Together, this study showcased crucial technical considerations in designing an ABE system for the heart and pointed out major challenges in further improvement of this new technology for gene therapy.


Assuntos
Adenina , Edição de Genes , Animais , Camundongos , Terapia Genética , Mutação/genética , RNA Guia de Sistemas CRISPR-Cas
3.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37905452

RESUMO

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Interferente Pequeno/metabolismo , Biossíntese de Proteínas , Proliferação de Células , Regeneração , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
J Gene Med ; 26(1): e3647, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084655

RESUMO

Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.


Assuntos
Aminoácidos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Imunoterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
5.
Biomacromolecules ; 25(2): 1246-1261, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38305191

RESUMO

Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/farmacologia , Biomassa , Quitosana/farmacologia , Dopamina , Periodonto , Alginatos/farmacologia , Antibacterianos/farmacologia
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361330

RESUMO

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Assuntos
Actinina/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Mitocôndrias/metabolismo , Morfogênese , Mutação , Miócitos Cardíacos/patologia , Sarcômeros/patologia , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
7.
Ecotoxicol Environ Saf ; 275: 116250, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552387

RESUMO

Forests emit a large amount of biogenic volatile organic compounds (BVOCs) in response to biotic and abiotic stress. Despite frequent occurrence of large forest fires in recent years, the impact of smoke stress derived from these forest fires on the emission of BVOCs is largely unexplored. Thus, the aims of the study were to quantify the amount and composition of BVOCs released by two sub-tropical tree species, Cunninghamia lanceolata and Schima superba, in response to exposure to smoke. Physiological responses and their relationship with BVOCs were also investigated. The results showed that smoke treatments significantly (p < 0.001) promoted short-term release of BVOCs by C. lanceolata leaves than S. superba; and alkanes, olefins and benzene homologs were identified as major classes of BVOCs. Both C. lanceolata and S. superba seedlings showed significant (p < 0.005) physiological responses after being smoke-stressed where photosynthetic rate remained unaffected, chlorophyll content greatly reduced and Activities of anti-oxidant enzymes and the malondialdehyde content generally increased with the increase in smoke concentration. Activities of anti-oxidant enzymes showed mainly positive correlations with the major BVOCs. In conclusion, the release of BVOCs following smoke stress is species-specific and there exists a link between activities of antioxidant enzymes and BVOCs released. The findings provide insight about management of forest fires in order to control excessive emission of smoke that would trigger increased release of BVOCs.


Assuntos
Compostos Orgânicos Voláteis , Incêndios Florestais , Árvores , Antioxidantes , Fumar
8.
Pharmacol Res ; 198: 107017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006979

RESUMO

Sorafenib, a multi-targeted tyrosine kinase inhibitor, is a first-line treatment for advanced solid tumors, but it induces many adverse cardiovascular events, including myocardial infarction and heart failure. These cardiac defects can be mediated by alternative splicing of genes critical for heart function. Whether alternative splicing plays a role in sorafenib-induced cardiotoxicity remains unclear. Transcriptome of rat hearts or human cardiomyocytes treated with sorafenib was analyzed and validated to define alternatively spliced genes and their impact on cardiotoxicity. In rats, sorafenib caused severe cardiotoxicity with decreased left ventricular systolic pressure, elongated sarcomere, enlarged mitochondria and decreased ATP. This was associated with alternative splicing of hundreds of genes in the hearts, many of which were targets of a cardiac specific splicing factor, RBM20. Sorafenib inhibited RBM20 expression in both rat hearts and human cardiomyocytes. The splicing of RBM20's targets, SLC25A3 and FHOD3, was altered into fetal isoforms with decreased function. Upregulation of RBM20 during sorafenib treatment reversed the pathogenic splicing of SLC25A3 and FHOD3, and enhanced the phosphate transport into mitochondria by SLC25A3, ATP synthesis and cell survival.We envision this regulation may happen in many drug-induced cardiotoxicity, and represent a potential druggable pathway for mitigating sorafenib-induced cardiotoxicity.


Assuntos
Processamento Alternativo , Cardiotoxicidade , Ratos , Animais , Humanos , Sorafenibe , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Sarcômeros/metabolismo , Genes Mitocondriais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Forminas/genética , Forminas/metabolismo
9.
Pharmacol Res ; 187: 106625, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563870

RESUMO

Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia
10.
Macromol Rapid Commun ; 44(15): e2300160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37194471

RESUMO

Dielectric elastomers based on commercial acrylic dielectric elastomers (VHB adhesive films) are widely investigated for soft actuators due to their large electrically driven actuation strain and high work density. However, the VHB films require prestretching to overcome electromechanical instability, which adds fabrication complexity. In addition, their high viscoelasticity leads to a low response speed. Interpenetrated polymer networks (IPNs) are developed to lock the prestrain in VHB films, resulting in free-standing films that are capable of large-strain actuation. In this work, a prestrain-locked high-performance dielectric elastomer thin film (VHB-IPN-P) by introducing 1,6-hexanediol diacrylate to create an IPN in the VHB network and a plasticizer to enhance the actuation speed is reported. VHB-IPN-P based actuators exhibit stable actuation at 60% strain up to 10 Hz and reach a peak energy density of 102 J kg⁻1 . In addition, a hybrid process is also developed for the fabrication of multilayer stacks of VHB-IPN-P with strong inter-layer bonding and structural integrity. Four-layer stacks fabricated preserve the strain and energy density of single-layer VHB-IPN-P films but with linearly scaled force and work output.


Assuntos
Elastômeros , Polímeros , Elastômeros/química , Polímeros/química , Eletricidade
11.
Medicina (Kaunas) ; 59(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374362

RESUMO

Background: The maturation of cardiomyocytes is a rapidly evolving area of research within the field of cardiovascular medicine. Understanding the molecular mechanisms underlying cardiomyocyte maturation is essential to advancing our knowledge of the underlying causes of cardiovascular disease. Impaired maturation can lead to the development of cardiomyopathy, particularly dilated cardiomyopathy (DCM). Recent studies have confirmed the involvement of the ACTN2 and RYR2 genes in the maturation process, facilitating the functional maturation of the sarcomere and calcium handling. Defective sarcomere and electrophysiological maturation have been linked to severe forms of cardiomyopathy. This report presents a rare case of DCM with myocardial non-compaction, probably resulting from allelic collapse of both the ACTN2 and RYR2 genes. Case Presentation: The proband in this case was a four-year-old male child who presented with a recurrent and aggressive reduction in activity tolerance, decreased ingestion volume, and profuse sweating. Electrocardiography revealed significant ST-T segment depression (II, III, aVF V3-V6 ST segment depression >0.05 mV with inverted T-waves). Echocardiography showed an enlarged left ventricle and marked myocardial non-compaction. Cardiac magnetic resonance imaging revealed increased left ventricular trabeculae, an enlarged left ventricle, and a reduced ejection fraction. Whole exome sequencing revealed a restricted genomic depletion in the 1q43 region (chr1:236,686,454-237,833,988/Hg38), encompassing the coding genes ACTN2, MTR, and RYR2. The identified variant resulted in heterozygous variations in these three genes, with the ACTN2 g.236,686,454-236,764,631_del and RYR2 g.237,402,134-237,833,988_del variants being the dominant contributors to the induction of cardiomyopathy. The patient was finally diagnosed with DCM and left ventricular myocardial non-compaction. Conclusions: This study reports a rare case of DCM with myocardial non-compaction caused by the allelic collapse of the ACTN2 and RYR2 genes. This case provides the first human validation of the critical role of cardiomyocyte maturation in maintaining cardiac function and stability and confirms the key findings of previous experimental research conducted by our group. This report emphasizes the connection between genes involved in regulating the maturation of cardiomyocytes and the development of cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Masculino , Criança , Humanos , Pré-Escolar , Cardiomiopatia Dilatada/patologia , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Miocárdio/patologia , Ventrículos do Coração
12.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33793303

RESUMO

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Assuntos
Síndrome de Barth/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Síndrome de Barth/fisiopatologia , Humanos , Camundongos , Camundongos Knockout
13.
Circ Res ; 126(8): 1086-1106, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32271675

RESUMO

Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.


Assuntos
Diferenciação Celular/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Células-Tronco Pluripotentes/fisiologia
14.
J Asian Nat Prod Res ; 24(1): 76-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34937462

RESUMO

Renal fibrosis is a critical pathological process lead to a progressive loss of renal function. Jolkinolide B (JB) is a natural compound with anti-inflammatory activity from Euphorbia fischeriana Steud. The study evaluated the effect of JB on renal fibrosis in mice with unilateral ureteral obstruction (UUO). The results showed that JB could decrease renal fibrotic area, reduce phosphorylation of NF-κB p65 and the release of TNF-α, IL-6 and IL-1ß, restore the expression of vementin, α-SMA and E-cadherin, as well as TGF-ß1 and p-smad2/3. In conclusion, JB might reduce renal fibrosis by inhibiting inflammation induced by NF-κB pathway and EMT mediated by TGF-ß1/Smad pathway.


Assuntos
Obstrução Ureteral , Animais , Anti-Inflamatórios/farmacologia , Diterpenos , Transição Epitelial-Mesenquimal , Fibrose , Rim/patologia , Camundongos , Estrutura Molecular , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia
15.
Yi Chuan ; 44(5): 398-413, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729697

RESUMO

Meiosis is a specialized cell division that occurs in reproductive cells during sexual reproduction. It contains once DNA replication following nucleus division twice, thus producing haploid gametes. Fusion of male and female gametes restores genome to the diploid level, which not only ensures the genome stability between generations during sexual reproduction, but also leads to genetic diversity among offspring. Meiosis homologous recombination (HR) is one of the crucial events during meiotic prophase I, and it not only ensures the subsequently faithful segregation of homologous chromosomes (homologs), but also exchanges genetic information between homologs with greatly increasing the genetic diversity of progeny. RAD51 (RADiation sensitive 51) and DMC1 (disruption Meiotic cDNA 1) are essential recombinases for the HR process, and have certain commonalities and differences. In this review, we summarize and compare the conserved and differentiated features of RAD51 and DMC1 in terms of origin, evolution, structure, and function, we also provide an outlook on future research directions to further understand and study the molecular mechanisms in regulation of meiotic recombination.


Assuntos
Meiose , Recombinases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Feminino , Recombinação Homóloga , Humanos , Masculino , Meiose/genética , Rad51 Recombinase/genética , Recombinases/genética
16.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6720-6729, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604922

RESUMO

As a classic prescription, Wuji Pills is composed of Coptidis Rhizoma, Euodiae Fructus Preparata, and stir-fried Paeo-niae Radix Alba at the ratio of 6∶1∶6. The practical application of it is limited compared with other famous Chinese medicine prescriptions. Only one company produces Wuji Pills in China. In this study, ultra-performance liquid chromatography quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to analyze and identify 26 identical compounds from Wuji Pills and drug-containing plasma of rats. Based on these components, 46 potential targets were screened out with network pharmacology methods, followed by the component-target network construction, Gene Ontology(GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and disease prediction. It was concluded that Wuji Pills acted on core targets such as PTGS2, PTSG1, NCOA2, HSP9 OAD1, and RXRA through magnoflorine, hydroxyevodiamine, daucosterol, and berberine and exerted pharmacodynamic effects through various pathways such as calcium ion signaling pathway, phosphatidylinositol-3-kinase-protein kinase B(PI3 K-Akt) signaling pathway, and vascular endothelial growth factor(VEGF) signaling pathway. Thus, Wuji Pills has therapeutic potential for Alzheimer's disease, diabetes mellitus, myocardial ischemia, and other diseases in addition to the conventional disease(irritable bowel syndrome, IBS). The above research results can provide a reference for the comprehensive interpretation of the pharmacodynamic basis of Wuji Pills and the expansion of clinical application. At the same time, a lot of components in serum and the in vivo transformed and metabolized components of Wuji Pills have similar structure and relative molecular weight. In theory, these components may show additive effects and the competitive/antagonistic effects on the same target. According to the hypothesis of "additive effect of multiple components for a single target" in traditional Chinese medicine, multiple similar components may exert the additive effects on local targets. This study can partly prove the scientificity of this hypothesis and provide laboratory evidence.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Espectrometria de Massas em Tandem , Farmacologia em Rede , Fator A de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular
17.
Plant Physiol ; 182(4): 2025-2034, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32054782

RESUMO

jing he sheng1 (jhs1) is a mutant of the DNA2 homolog in Arabidopsis (Arabidopsis thaliana), which was previously identified as being involved in DNA damage repair, cell cycle regulation, and meristem maintenance. A mutation at the 3' intron splice site of the 11th intron causes alternative splicing of this intron at two other sites, which results in frame shifts and premature stop codons. Here, we screened suppressors of jhs1 to further study the function and regulatory networks of JHS1 Three suppressors with wild-type-like phenotypes were obtained. Sequencing analysis results showed that each of the suppressors has a second mutation in jhs1 that causes further alternative splicing of the intron and corrects the shifted reading frame with small insertions. Precursor mRNA sequence analysis and intron splice site evaluation results suggested that intron splicing was disturbed in the suppressors, and this switched the splice site, resulting in small insertions in the coding regions of JHS1. Structural analysis of JHS1 suggested that the insertions are in a disordered loop region of the DNA2 domain and do not seem to have much deleterious effect on the function of the protein. This work not only has implications for the evolution of protein sequences at exon junctions but also provides a strategy to study the mechanism of precursor mRNA splicing.


Assuntos
Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Íntrons/genética , Mutação/genética , Fenótipo , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
18.
Am J Emerg Med ; 48: 103-109, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33866268

RESUMO

INTRODUCTION: The objective of this meta-analysis was to systematically assess the association between periodontal disease (PD) and myocardial infarction (MI). METHODS: We searched the EMBASE, PubMed, and Cochrane Library databases for eligible cohort studies from inception to August 31st, 2020 that reported the association between PD and MI. Data extraction was conducted after screening the literature. The risk of bias of the included studies was evaluated by using the Newcastle-Ottawa Scale (NOS). The combined OR value and 95% confidence interval (CI) were calculated by using STATA 11.0 software, and the source of any heterogeneity was determined by performing subgroup analysis and sensitivity analysis. RESULTS: A total of 10 cohort studies involving 5,369,235 participants fulfilled the inclusion criteria. The meta-analysis showed an increased risk for MI in patients with PD [RR = 1.13, 95% CI (1.04, 1.21), P = 0.004], and this result was robust according to sensitivity analysis. Subgroup analyses indicated that the results were affected by sex, effect value, study quality, survey form and investigation type. DISCUSSION: This meta-analysis suggests that PD is modestly associated with MI, especially in women, which is similar to the conclusions of earlier meta-analyses of case-control or observational studies. PD may be an untraditional risk factor for cardiovascular diseases, including MI; thus, maintaining periodontal health may be an effective measure to prevent MI. More cohort studies are still needed to further explore the relationship between the incidence of MI and PD.


Assuntos
Infarto do Miocárdio/etiologia , Doenças Periodontais/complicações , Estudos de Coortes , Humanos , Razão de Chances , Fatores de Risco
19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(5): 488-496, 2021 May 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-34148885

RESUMO

OBJECTIVES: To determine the association between glycosylated hemoglobin (HbA1c) and ambulatory blood pressure or heart rate in hypertensive patients. METHODS: A total of 585 patients, who performed ambulatory blood pressure monitoring (ABPM) from September 2018 to April 2019 in Xiangya Hospital, Central South University, were enrolled and assigned into 2 groups (470 in a hypertensive group and 115 in a normal group). HbA1c levels were compared. According to the HbA1c level, the hypertensive group was divided into 2 subgroups: A high HbA1c group (HbA1c≥6.1%, n=142) and a normal HbA1c group (HbA1c<6.1%, n=328). Whole basic data and ABPM parameter were compared among the groups. Pearson/Spearman correlation analysis was applied to study the association between HbA1c and BPV. Multivariate logistic regression was used to explore the influential factors for HbA1c (≥6.1%) and continuous increase of HbA1c in different hypertensive populations, respectively. RESULTS: The hypertensive group had higher HbA1c level than the normal group [(6.1±1.3)% vs (5.1±1.7)%, P<0.05]. In hypertensive patients, nocturnal systolic blood pressure [(131.1±19.2) mmHg vs (122.5±19.2) mmHg], nocturnal systolic blood pressure load [62.5% (15.5%-100%) vs 28.6% (0-75%)], and daytime heart rate [(74.3±11.6) min-1 vs (71.2±11.4) min-1] of the high HbA1c group were higher than those in the normal HbA1c group (all P<0.05). Pearson/Spearman correlation analysis showed that HbA1c was positively correlated with systolic blood pressure and blood pressure load (both P<0.05). Logistic regression analysis showed that nocturnal systolic pressure load was the risk factor for the increase of HbA1c level (OR=1.025, 95% CI 1.003 to 1.048, P<0.05). Multiple linear regression showed that nocturnal systolic pressure load was still positively correlated with HbA1c in total, tertiary, and hypertensive patients without treatment (ß=0.155, ß=0.171, ß=0.384, respectively, all P<0.05). CONCLUSIONS: In hypertensive patients, HbA1c is positively correlated with ambulate blood pressure, blood pressure load, and heart rate, and it has no correlation with blood pressure variability, heart rate variability, or morning blood pressure.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Hipertensão , Pressão Sanguínea , Hemoglobinas Glicadas/análise , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA