Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Gene ; 585(1): 44-50, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26992639

RESUMO

Transcription factor nuclear factor of activated T cells c4 (NFATc4) is the best-characterized target for the development of cardiac hypertrophy. Aberrant microRNA-29 (miR-29) expression is involved in the development of cardiac fibrosis and congestive heart failure. However, whether miR-29 regulates hypertrophic processes is still not clear. In this study, we investigated the potential functions of miR-29a-3p in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. We showed that miR-29a-3p was down-regulated in ET-1-treated H9c2 cardiomyocytes. Overexpression of miR-29a-3p significantly reduced ET-1-induced hypertrophic responses in H9c2 cardiomyocytes, which was accompanied by a decrease in NFATc4 expression. miR-29a-3p targeted directly to the 3'-UTR of NFATc4 mRNA and silenced NFATc4 expression. Our results indicate that miR-29a-3p inhibits ET-1-induced cardiomyocyte hypertrophy via inhibiting NFATc4 expression.


Assuntos
Cardiomegalia/genética , Endotelina-1/metabolismo , Insuficiência Cardíaca/genética , MicroRNAs/genética , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Regulação para Baixo/genética , Fibrose/genética , MicroRNAs/biossíntese , Fatores de Transcrição NFATC/biossíntese , Proteínas do Tecido Nervoso/biossíntese , RNA Mensageiro/genética , Ratos
2.
Stem Cells Int ; 2015: 534758, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949242

RESUMO

Mesenchymal stem cells (MSCs) are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF), but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrins α1ß1 and α5ß1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression of α1, α5, and ß1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrins α1, α5, and ß1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrin α1 and α5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK) inhibitor Y27632 or with shMRTF-A inhibited both the upregulation of α1, α5, and ß1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs), MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA