Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 52(12): 7142-7157, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38804263

RESUMO

DHH/DHHA1 family proteins have been proposed to play critical roles in bacterial resistance to environmental stresses. Members of the most radioresistant bacteria genus, Deinococcus, possess two DHH/DHHA1 family proteins, RecJ and RecJ-like. While the functions of Deinococcus radiodurans RecJ (DrRecJ) in DNA damage resistance have been well characterized, the role and biochemical activities of D. radiodurans RecJ-like (DrRecJ-like) remain unclear. Phenotypic and transcriptomic analyses suggest that, beyond DNA repair, DrRecJ is implicated in cell growth and division. Additionally, DrRecJ-like not only affects stress response, cell growth, and division but also correlates with the folding/stability of intracellular proteins, as well as the formation and stability of cell membranes/walls. DrRecJ-like exhibits a preferred catalytic activity towards short single-stranded RNA/DNA oligos and c-di-AMP. In contrast, DrRecJ shows no activity against RNA and c-di-AMP. Moreover, a crystal structure of DrRecJ-like, with Mg2+ bound in an open conformation at a resolution of 1.97 Å, has been resolved. Subsequent mutational analysis was conducted to pinpoint the crucial residues essential for metal cation and substrate binding, along with the dimerization state, necessary for DrRecJ-like's function. This finding could potentially extend to all NrnA-like proteins, considering their conserved amino acid sequence and comparable dimerization forms.


Assuntos
Proteínas de Bactérias , Deinococcus , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Cristalografia por Raios X , Sequência de Aminoácidos , Reparo do DNA
2.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257400

RESUMO

Red guava, distinguished by its elevated lycopene content, emerges as a promising natural source of carotenoids. This study systematically evaluates the impact of diverse processing techniques on the efficient release of carotenoids. The primary objective is to facilitate the transfer of carotenoids into the juice fraction, yielding carotenoid-enriched juice seamlessly integrable into aqueous-based food matrices. The untreated guava puree exhibited a modest release of carotenoids, with only 66.26% of ß-carotene and 57.08% of lycopene reaching the juice. Contrastly, both high-pressure homogenization (HPH) at 25 MPa and enzyme (EM) treatment significantly enhanced carotenoid release efficiency (p < 0.05), while high hydrostatic pressure (HHP) at 400 MPa and pulsed electric field (PEF) of 4 kV/cm did not (p > 0.05). Notably, HPH demonstrated the most substantial release effect, with ß-carotene and lycopene reaching 90.78% and 73.85%, respectively. However, the stability of EM-treated samples was relatively poor, evident in a zeta-potential value of -6.51 mV observed in the juice. Correlation analysis highlighted the interactions between pectin and carotenoids likely a key factor influencing the stable dissolution or dispersion of carotenoids in the aqueous phase. The findings underscore HPH as a potent tool for obtaining carotenoid-enriched guava juice, positioning it as a desirable ingredient for clean-label foods.


Assuntos
Psidium , beta Caroteno , Licopeno , Carotenoides , Eletricidade
3.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611714

RESUMO

Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.


Assuntos
Cádmio , Fator 2 Relacionado a NF-E2 , Pirazinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos ICR , Cádmio/toxicidade , Estresse Oxidativo , Fígado , RNA Mensageiro
4.
J Cell Mol Med ; 27(13): 1806-1819, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243389

RESUMO

Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the resistance to endoplasmic reticulum (ER) stress in many cancers. However, ER stress-regulated lncRNAs are still unknown in glioma. In the present study, we investigated the altered lncRNAs upon ER stress in glioma and found that small nucleolar RNA host gene 1 (SNHG1) was markedly increased in response to ER stress. Increased SNHG1 suppressed ER stress-induced apoptosis and promoted tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that SNHG1 elevated BIRC3 mRNA stability and enhanced BIRC3 expression. We also found that KLF4 transcriptionally upregulated SNHG1 expression and contributed to the ER stress-induced SNHG1 increase. Collectively, the present findings indicated that SNHG1 is a KLF4-regulated lncRNA that suppresses ER stress-induced apoptosis and facilitates gliomagenesis by elevating BIRC3 expression.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Sobrevivência Celular , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Glioma/genética , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Linhagem Celular Tumoral , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo
5.
J Cell Biochem ; 120(8): 13664-13679, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938863

RESUMO

Nucleus pulposus (NP) mesenchymal stem cells (NPMSCs) are a potential cell source for intervertebral disc (IVD) regeneration; however, little is known about their response to tumor necrosis factor-α (TNF-α), a critical inflammation factor contributing to accelerating IVD degeneration. Accordingly, the aim of this study was to investigate the regulatory effects of TNF-α at high and low concentrations on the biological behaviors of healthy rat NPMSCs, including proliferation, migration, and NP differentiation. In this study, NPMSCs were treated with different concentration of TNF-α (0-200 ng/mL). Then we used annexin V/propidium iodide flow cytometry analysis to detect the apoptosis rate of NPMSCs. Cell Counting Kit-8, Edu assay, and cell cycle test were used to examine the proliferation of NPMSCs. Migration ability of NPMSCs was detected by wound healing assay and transwell migration assay. Pellets method was used to induce NP differentiation of NPMSCs, and immunohistochemical staining, real-time polymerase chain reaction, and Western blot analysis were used to examine the NPC phenotypic genes and proteins. The cells were further treated with the nuclear factor-κB (NF-κB) pathway inhibitor Bay 11-7082 to determine the role of the NF-κB pathway in the mechanism underlying the differentiation process. Results showed that treatment with a high concentration of TNF-α (50-200 ng/mL) could induce apoptosis of NPMSCs, whereas a relatively low TNF-α concentration (0.1-10 ng/mL) promoted the proliferation and migration of NPMSCs, but inhibited their differentiation toward NP cells. Moreover, we identified that the NF-κB signaling pathway is activated during the TNF-α-inhibited differentiation of NPMSCs, and the NF-κB signal inhibitor Bay 11-7082 could partially eliminate the adverse effect of TNF-α on the differentiation of NPMSCs. Therefore, our findings provide important insight into the dynamic biological behavior reactivity of NPMSCs to TNF-α during IVD degeneration process, thus may help us understanding the underlying mechanism of IVD degeneration.


Assuntos
Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Núcleo Pulposo/citologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
7.
Biomed Pharmacother ; 162: 114650, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031492

RESUMO

Brusatol (Bru), a Chinese medicine Brucea javanica extract, has a variety of antitumour effects. However, its role and underlying mechanism in melanoma have not been fully elucidated. In this study, we found that brusatol inhibited melanoma cell proliferation and migration and promoted cell apoptosis in vitro, in addition to suppressing melanoma cell tumorigenesis in vivo. Further studies on the mechanism revealed that brusatol significantly downregulated the expression of stearoyl-CoA desaturase 1 (SCD1). Increased SCD1 expression could impair the antitumour effects of brusatol on melanoma cells. Subsequently, we found that HOXB9, an important transcription factor, was directly bound to the promoter of SCD1, facilitating its transcription. Overexpression of HOXB9 inhibited brusatol-induced SCD1 reduction and promoted cell survival. Furthermore, our results revealed that miR-122-5p was significantly increased in response to brusatol treatment and led to a decrease in HOXB9 in melanoma. Collectively, our data suggested that the miR-122-5p/HOXB9/SCD1 axis might play an important role in the antitumour effects of brusatol and that brusatol might have potential clinical implications in melanoma therapy.


Assuntos
Melanoma , MicroRNAs , Quassinas , Humanos , Melanoma/patologia , Regulação da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Estearoil-CoA Dessaturase/genética
8.
Expert Opin Ther Pat ; 33(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698323

RESUMO

INTRODUCTION: Kidney-type glutaminase (GLS1), a key enzyme controlling the hydrolysis of glutamine to glutamate to resolve the 'glutamine addiction' of cancer cells, has been shown to play a central role in supporting cancer growth and proliferation. Therefore, the inhibition of GLS1 as a novel cancer treating strategy is of great interest. AREAS COVERED: This review covers recent patents (2019-present) involving GLS1 inhibitors, which are mostly focused on their chemical structures, molecular mechanisms of action, pharmacokinetic properties, and potential clinical applications. EXPERT OPINION: Currently, despite significant efforts, the search for potent GLS1 inhibitors has not resulted in the development of compounds for therapeutic applications. Most recent patents and literature focus on GLS1 inhibitors IPN60090 and DRP104, which have entered clinical trials. While other patent disclosures during this period have not generated any drug candidates, the clinical update will inform the potential of these inhibitors as promising therapeutic agents either as single or as combination interventions.


Assuntos
Glutamina , Neoplasias , Humanos , Glutaminase , Patentes como Assunto , Inibidores Enzimáticos/farmacologia
9.
Sci Rep ; 12(1): 18293, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316355

RESUMO

Osteosarcoma is a primary malignant tumor that often metastasizes in orthopedic diseases. Although multi-drug chemotherapy and surgical treatment have significantly improved the survival and prognosis of patients with osteosarcoma, the survival rate is still very low due to frequent metastases in patients with osteosarcoma. In-depth exploration of the relationship between various influencing factors of osteosarcoma is very important for screening promising therapeutic targets. This study used multivariate COX regression analysis to select the hypoxia genes SLC2A1 and FBP1 in patients with osteosarcoma, and used the expression of these two genes to divide the patients with osteosarcoma into high-risk and low-risk groups. Then, we first constructed a prognostic model based on the patient's risk value and compared the survival difference between the high expression group and the low expression group. Second, in the high expression group and the low expression group, compare the differences in tumor invasion and inflammatory gene expression between the two groups of immune cells. Finally, the ferroptosis-related genes with differences between the high expression group and the low expression group were screened, and the correlation between these genes was analyzed. In the high-risk group, immune cells with higher tumor invasiveness, macrophages M0 and immune cells with lower invasiveness included: mast cell resting, regulatory T cells (Tregs) and monocytes. Finally, among genes related to ferroptosis, we found AKR1C2, AKR1C1 and ALOX15 that may be related to hypoxia. These ferroptosis-related genes were discovered for the first time in osteosarcoma. Among them, the hypoxia gene FBP1 is positively correlated with the ferroptosis genes AKR1C1 and ALOX15, and the hypoxia gene SLC2A1 is negatively correlated with the ferroptosis genes AKR1C2, AKR1C1 and ALOX15. This study constructed a prognostic model based on hypoxia-related genes SLC2A1 and FBP1 in patients with osteosarcoma, and explored their correlation with immune cells, inflammatory markers and ferroptosis-related genes. This indicates that SLC2A1 and FBP1 are promising targets for osteosarcoma research.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Feminino , Humanos , Neoplasias Ósseas/metabolismo , Osteossarcoma/patologia , Prognóstico , Invasividade Neoplásica , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia Fetal
10.
J Oncol ; 2022: 7485435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813863

RESUMO

Objective: This study aimed to develop a novel ferroptosis-related gene-based prognostic signature for esophageal carcinoma (ESCA). Methods: The TCGA-ESCA gene expression profiles and corresponding clinical data were downloaded from the TCGA database. Ferroptosis-related genes were identified from the literature and public databases, which were intersected with the differentially expressed genes between ESCA and normal samples. After univariate Cox regression and random forest analyses, several ferroptosis-related feature genes were identified and used to construct a prognostic signature. Then, the prognostic value of the complex value and the correlation of the complex value with immune cell infiltration were analyzed. Moreover, function analysis, mutation analysis, and molecular docking on the ferroptosis-related feature genes were performed. Results: Based on the TCGA dataset and ferroptosis pathway genes, 1929 ferroptosis-related genes were preliminarily selected. Following univariate Cox regression analysis and survival analysis, 14 genes were obtained. Then, random forest analysis identified 10 ferroptosis key genes. These 10 genes were used to construct a prognostic complex value. It was found that low complex value indicated better prognosis compared with high complex value. In different ESCA datasets, there were similar differences in the proportion of immune cell distribution between the high and low complex value groups. Furthermore, TNKS1BP1, AC019100.7, KRI1, BCAP31, and RP11-408E5.5 were significantly correlated with ESCA tumor location, lymph node metastasis, and age of patients. KRI1 had the highest mutation frequency. BCAP31 had the strongest binding ability with small molecules DB12830, DB05812, and DB07307. Conclusion: We constructed a novel ferroptosis-related gene signature, which has the potential to predict patient survival and tumor-infiltrating immune cells of ESCA.

11.
Materials (Basel) ; 15(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897585

RESUMO

An AlCrSiWN coating was prepared on a cemented carbide substrate by the arc ion plating technology. The optimization of the coating process was carried out by matrix analysis of orthogonal experiments to calculate the influence of the process parameters on the hardness, bonding and roughness indexes of the coating, determine the optimal coating process parameters, and focus on the influence of the bias voltage on the microscopic morphology, mechanical properties and friction properties of the coating. The results showed that the influence of the process parameters on the indexes of the orthogonal experiments was in the following order: bias voltage > arc current > N2 flow rate. The optimal solution was achieved with an arc current of 160 A, a bias voltage of −80 V, and a N2 flow rate of 600 sccm. Properly increasing the bias voltage improved the microscopic morphology, mechanical properties and wear resistance of the coating. When the bias voltage was −80 V, the coating surface presented fewer large particles with a less uniform size and no obvious crater defects; in addition, the cross-sectional structure changed from grape-like to columnar, and the coating had higher hardness, lower roughness and better bond strength. In the friction performance test, coating at a −80 V bias voltage showed better wear resistance, which was reflected in lower friction coefficient and wear, and the wear mechanism mainly consisted of adhesion and oxidation wear.

12.
Materials (Basel) ; 15(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234373

RESUMO

(1) Mud pulser carbide rotors, as a core component of ground communication in crude oil exploration, are often subjected to mud erosion and acid corrosion, resulting in pitting pits on the surface, which affects the accuracy. The purpose of this study was to investigate the acid corrosion and erosion behavior of cemented carbide materials and provide a reference for the wider application of cemented carbide materials in the petrochemical industry. (2) Experimental samples of tungsten-cobalt carbide were sintered at a low pressure by powder metallurgy. The petrochemical application environment was simulated by accelerated salt spray corrosion and solid slurry erosion with the aid of acidic copper, and the experimental phenomena were analyzed by SEM (scanning electron microscope), EDS (Energy Dispersive Spectroscopy), and XRD (X-ray diffraction). (3) The experimental results show that the coercivity of the pitted cobalt-cemented tungsten carbide prepared in this study was 17.89 KA/m, and the magnetic saturation strength was 14.42 G·cm3/g. The corrosion rate was the fastest during the acidic copper acceleration experiments from 4 h to 16 h, and the corrosion products of WCo3 and Co3O4 were generated on the corrosion surface. The maximum erosion rate of 0.00104 in the erosion experiment corresponds to a corrosion sample with a corrosion time of 36 h. (4) Therefore, the coercive magnetic force and magnetic saturation strength could be derived from the prepared carbide hard phase grains and carbon content in the appropriate range. The corrosion product in the corrosion process slowed the corrosion rate, and a large amount of cobalt and a small amount of tungsten was lost by oxidation during the corrosion process. The corrosion time had the greatest effect on the erosion performance of the carbide, and the long corrosion time led to surface sparseness, which reduced the erosion resistance.

13.
Front Genet ; 12: 669598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234811

RESUMO

BACKGROUND: Intervertebral disk degeneration (IDD) is a serious public health problem associated with genetic and environmental factors. However, the pathogenic factors involved and the pathological mechanism of this disease still remain enigmatic. METHODS: The associated microarray was downloaded and further analyzed using statistical software R. The competing endogenous RNA (ceRNA) co-expression network was constructed to measure the meaningful correlated expression of differentially expressed genes. We further measured the expression of circARL15/miR-431-5p/DISC1 in IDD tissues. Cell proliferation and apoptosis were detected in NP cells transfected with a circARL15 overexpression plasmid and miR-431-5p mimics. The expression of DISC1 was detected by immunohistochemistry and Western blot analysis. RESULTS: Within the ceRNA network, circARL15 is the most differentially expressed circular RNA. circARL15 was down-regulated in IDD and was negatively correlated with miR-431-5p and positively associated with DISC1. miR-431-5p was found to bind directly to circARL15 and DISC1. circARL15 inhibited nucleus pulposus cell apoptosis but promoted nucleus pulposus cell proliferation by targeting the miR-431-5p/DISC1 signaling pathway. CONCLUSION: circARL15/miR-431-5p/DISC1 is involved in the pathogenesis of IDD, which might be helpful in determining the diagnostic biomarkers and providing potential therapeutic targets for patients with IDD.

14.
Front Neurosci ; 15: 645374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927589

RESUMO

Herein, we propose a real-time stable control gait switching method for the exoskeleton rehabilitation robot. Exoskeleton rehabilitation robots have been extensively developed during the past decade and are able to offer valuable motor ability to paraplegics. However, achieving stable states of the human-exoskeleton system while conserving wearer strength remains challenging. The constant switching of gaits during walking may affect the center of gravity, resulting in imbalance of human-exoskeleton system. In this study, it was determined that forming an equilateral triangle with two crutch-supporting points and a supporting leg has a positive impact on walking stability and ergonomic interaction. First, the gaits planning and stability analysis based on human kinematics model and zero moment point method for the lower limb exoskeleton are demonstrated. Second, a neural interface based on surface electromyography (sEMG), which realizes the intention recognition and muscle fatigue estimation, is constructed. Third, the stability of human-exoskeleton system and ergonomic effects are tested through different gaits with planned and unplanned gait switching strategy on the SIAT lower limb rehabilitation exoskeleton. The intention recognition based on long short-term memory (LSTM) model can achieve an accuracy of nearly 99%. The experimental results verified the feasibility and efficiency of the proposed gait switching method for enhancing stability and ergonomic effects of lower limb rehabilitation exoskeleton.

15.
PLoS One ; 15(8): e0238247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853239

RESUMO

Switching different gait according to different movements is an important direction in the study of exoskeleton robot. Identifying the movement intention of the wearer to control the gait planning of the exoskeleton robot can effectively improve the man-machine interaction experience after the exoskeleton. This paper uses a support vector machine (SVM) to realize wearer's motion posture recognition by collecting sEMG signals on the human surface. The moving gait of the exoskeleton is planned according to the recognition results, and the decoding intention signal controls gait switching. Meanwhile, the stability of the planned gait during the movement was analyzed. Experimental results show that the sEMG signal decoding human motion intentional, and control exoskeleton robot gait switching has good accuracy and real-time performance. It helps patients to complete rehabilitation training more safely and quickly.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Eletromiografia/métodos , Exoesqueleto Energizado , Humanos , Movimento (Física) , Movimento/fisiologia , Robótica/métodos , Máquina de Vetores de Suporte
16.
Acta Crystallogr B ; 64(Pt 6): 702-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19029699

RESUMO

In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure.

17.
Tissue Eng Part A ; 23(15-16): 837-846, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28145804

RESUMO

Recent studies suggested that notochordal cells (NCs) and NC-conditioned medium (NCCM) can stimulate cell viability and matrix production of nucleus pulposus cells (NPCs). However, the potential of notochordal cell-rich nucleus pulposus (NRNP) incorporating the native environment of the intervertebral disc (IVD) has not been evaluated. The objective of this study was to develop an optimal NRNP model and test whether it can allow a significant level of NPC activation in vitro. Rabbit NRNP explants were divided into three groups according to different digestion time: digestion NRNP of 8 h, partial digestion NRNP of 2 h, and natural NRNP. Cell viability and NC phenotype were compared between these groups after 14 days of incubation. The products of the selected partial digestion NRNP group were then cocultured with human degenerated NPCs for 14 days. NPC viability, cell proliferation and senescence, the production of glycosaminoglycan (GAG) found in extracellular matrix, and NP matrix production by NPCs were assessed. The results showed that coculturing with partial digestion NRNP significantly improved the cell proliferation, cell senescence, and disc matrix gene expression of NPCs compared with those in the monoculture group. In addition, GAG/DNA ratio in the coculture group increased significantly, while the level of collagen II protein remained unchanged. In this study, we demonstrated that partial digestion NRNP may show a promising potential for NPC regeneration in IVD tissue engineering.


Assuntos
Técnicas de Cocultura/métodos , Degeneração do Disco Intervertebral/patologia , Notocorda/citologia , Núcleo Pulposo/citologia , Animais , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Senescência Celular , DNA/metabolismo , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Coelhos
18.
Biomed Res Int ; 2017: 9765843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29119116

RESUMO

OBJECTIVES: To evaluate the effects of the limiting dilution method and plating density in rat nucleus pulposus mesenchymal stem/progenitor cells (NPMSCs). MATERIALS AND METHODS: Nucleus pulposus tissues were isolated from 12-week-old male Sprague-Dawley rats and NPMSCs were isolated using limiting dilution method. Cells were then classified into 3 groups according to plating density. Cell morphologies were observed, and colony-forming units, migration abilities, proliferative capacities, cell cycle percentages, multilineage differentiation capacities, stem cell biomarker expression levels, and immunophenotyping were also examined in each group. RESULTS: Low density group (LD) had higher morphological homogeneity, stronger colony-forming ability, higher cell proliferation capacity, and enhanced cell migration ability relative to the other two groups (p < 0.05). Moreover, LD had more cells entering S phase, with fewer cells arrested in G0/G1 phase (p < 0.05). While all three density groups showed a multilineage differentiation potential, LD showed a higher degree of observed and semiquantified lineage specific staining (p < 0.05). Furthermore, LD displayed higher expression levels of stem cell biomarkers (Nanog, Oct4, and Sox2) and showed higher percentages of CD29+, CD44+, and CD90+ cells (p < 0.05) following flow cytometry analysis. CONCLUSIONS: Limiting dilution method is suggested when isolating NPMSCs as a means of improving cell activity and plasticity.


Assuntos
Antígenos de Diferenciação/metabolismo , Separação Celular/métodos , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
19.
Tissue Eng Part A ; 22(19-20): 1218-1228, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27582519

RESUMO

Tissue engineering has shown great success in the treatment of intervertebral disk degeneration (IVDD) in the past decade. However, the adverse and harsh microenvironment associated in the intervertebral disks remains a great obstacle for the survival of transplanted cells. Although increasing numbers of new materials have been created or modified to overcome this hurdle, a new effective strategy of biological therapy is still required. In this study, bone morphogenic protein 7 (BMP7)-based functionalized self-assembling peptides were developed by conjugating a bioactive motif from BMP-7 (RKPS) onto the C-terminal of the peptide RADARADARADARADA (RADA16-I) at a ratio of 1:1 to form a new RADARKPS peptide. Human nucleus pulposus-derived stem cells (NPDCs) were cultured in the presence of RADA-RKPS or RADA16-I in an apoptosis-promoting environment that was induced by tumor necrosis factor-alpha, and cells were cultured with RADA16-I in normal medium that served as the control group. After 48 h of apoptosis induction, the viability, proliferation, apoptosis rate, and expression of apoptosis-related genes of NPDCs in the different groups were evaluated, and the differentiation of NPDCs toward nucleus pulposus-like cells was tested. The results showed that the RADA-RKPS peptide could significantly protect the survival and proliferation of NPDCs. In addition, the application of RADA-RKPS decreased the rate of cell apoptosis, as detected by TUNEL-positive staining. Furthermore, our in vitro study confirmed the apoptosis-protecting effects of RADA-RKPS peptides, which significantly reduced the BAX/BCL-2 ratio of NPDCs and upregulated the gene expression of collagen II a1, aggrecan, and Sox-9 after 48 h of apoptosis induction. Collectively, these lines of evidence suggest that RADA-RKPS peptides confer a protective effect to NPDCs in an apoptosis environment, suggesting their potential application in the development of new biological treatment strategies for IVDD.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Morfogenética Óssea 7 , Disco Intervertebral/metabolismo , Peptídeos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Agrecanas/biossíntese , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo II/biossíntese , Feminino , Humanos , Disco Intervertebral/citologia , Masculino , Peptídeos/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Proteína X Associada a bcl-2/metabolismo
20.
ACS Appl Mater Interfaces ; 7(21): 11412-22, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25955035

RESUMO

This paper reports the localized electrical, polarization reversal, and piezoelectric properties of the individual hexagonal ZnO nanorods, which are grown via the hydrothermal method and textured with [0001] orientation. The studies are conducted with conductive atomic force microscopy (c-AFM) and piezoresponse force microscopy (PFM) techniques. The correlation between the resistance switching and polarization reversal is discussed. The c-AFM results show that there is less variation on the set or reset voltage in nanorod samples, compared to that of the ZnO thin film. With increasing aspect ratio of the nanorods, both set and reset voltages are decreased. The nanorods with low aspect ratio show unipolar resistance switching, whereas both unipolar and bipolar resistance switching are observed when the aspect ratio is larger than 0.26. The PFM results further show the ferroelectric-like property in the nanorods. Comparing with that of the ZnO thin film, the enhanced piezoresponse in the nanorods can be attributed to the size effect. In addition, the piezoresponse force spectroscopy (PFS) experiments are conducted in ambient air, synthetic air, and argon gas. It shows that the depolarization field in the nanorod may be due to the moisture in the environment; moreover, the increased piezoresponse may relate to the absence of oxygen in the environment. It is also shown that the piezoelectric responses increase nonlinearly with the aspect ratio of the nanorods. By comparing the piezoresponse hysteresis loops obtained from the nanorod samples of as-grown, air-annealed and vacuum-annealed, it is found that the oxygen vacancies are the origin of the polarization reversal in ZnO nanorods. Finally, the tradeoff between the electrical and ferroelectric-like properties is also observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA