Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38808747

RESUMO

Experimental studies of the products of elementary gas-phase chemical reactions occurring at low temperatures (<50 K) are very scarce, but of importance for fundamental studies of reaction dynamics, comparisons with high-level quantum dynamical calculations, and, in particular, for providing data for the modeling of cold astrophysical environments, such as dense interstellar clouds, the atmospheres of the outer planets, and cometary comae. This study describes the construction and testing of a new apparatus designed to measure product branching fractions of elementary bimolecular gas-phase reactions at low temperatures. It combines chirped-pulse Fourier transform millimeter wave spectroscopy with continuous uniform supersonic flows and high repetition rate laser photolysis. After a comprehensive description of the apparatus, the experimental procedures and data processing protocols used for signal recovery, the capabilities of the instrument are explored by the study of the photodissociation of acrylonitrile and the detection of two of its photoproducts, HC3N and HCN. A description is then given of a study of the reactions of the CN radical with C2H2 at 30 K, detecting the HC3N product, and with C2H6 at 10 K, detecting the HCN product. A calibration of these two products is finally attempted using the photodissociation of acrylonitrile as a reference process. The limitations and possible improvements in the instrument are discussed in conclusion.

2.
Faraday Discuss ; 245(0): 298-308, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37313855

RESUMO

Applying a novel action spectroscopic technique in a 4 K cryogenic ion-trap instrument, the molecule c-C3H2D+ has been investigated by high-resolution rovibrational and pure rotational spectroscopy for the first time. In total, 126 rovibrational transitions within the fundamental band of the ν1 symmetric C-H stretch were measured with a band origin centred at 3168.565 cm-1, which were used to predict pure rotational transition frequencies in the ground vibrational state. Based on these predictions, 16 rotational transitions were observed between 90 and 230 GHz by using a double-resonance scheme. These new measurements will enable the first radio-astronomical search for c-C3H2D+.

3.
J Phys Chem A ; 124(39): 7950-7958, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877606

RESUMO

CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies have focused on the reactions between CN and aromatic molecules. The recent detection of benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene (C7H8) reaction between 15 and 294 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. We also present the stationary points on the potential energy surface of this reaction to study the available reaction pathways. We find the rate constant does not change over this temperature range, with an average value of (4.1 ± 0.2) × 10-10 cm3 s-1, which is notably faster than the only previous measurement at 105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is related to enhanced multiphoton effects in the previous work.

4.
J Phys Chem A ; 123(46): 9995-10003, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647680

RESUMO

Methanol (CH3OH) is considered by astronomers to be the simplest complex organic molecule (COM) and has been detected in various astrophysical environments, including protoplanetary disks, comets, and the interstellar medium (ISM). Studying the reactivity of methanol at low temperatures will aid our understanding of the formation of other complex and potentially prebiotic molecules. A major destruction route for many neutral COMs, including methanol, is via their reactions with radicals such as CN, which is ubiquitous in space. Here, we study the kinetics of the reaction between methanol and the CN radical using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with Pulsed-Laser Photolysis-Laser-Induced Fluorescence (PLP-LIF). Electronic structure calculations were also performed to identify the exothermic channels through which this reaction can proceed. Our results for the rate coefficient are represented by the modified Arrhenius equation, k(T) = 1.26 × 10-11(T/300 K)-0.7 exp(-5.4 K/T), and display a negative temperature dependence over the temperature range 16.7-296 K, which is typical of what has been seen previously for other radical-neutral reactions that do not possess potential energy barriers. The rate coefficients obtained at room temperature strongly disagree with a previous kinetics study, which is currently available in the Kinetics Database for Astrochemistry (KIDA) and therefore used in some astrochemical models.

7.
Chem Commun (Camb) ; 59(88): 13083-13088, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877367

RESUMO

The Faraday Discussion 'Astrochemistry at high resolution' was held at the Space Telescope Science Institute, Baltimore, United States, and online from May 31-June 2, 2023. The meeting brought together observers, modellers, and experimentalists at different career stages and from different countries to discuss advancements in astrochemistry resulting from improved spatial resolution, spectral resolution, and sensitivity. This conference report provides highlights of the meeting and summaries of the talks presented.

8.
Nat Chem ; 14(7): 811-815, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513509

RESUMO

HCN and its unstable isomer HNC are widely observed throughout the interstellar medium, with the HNC/HCN abundance ratio correlating strongly with temperature. In very cold environments HNC can even appear more abundant than HCN. Here we use a chirped pulse Fourier transform spectrometer to measure the pressure broadening of HCN and HNC, simultaneously formed in situ by laser photolysis and cooled to low temperatures in uniform supersonic flows of helium. Despite the apparent similarity of these systems, we find the HNC-He cross section to be more than twice as big as the HCN-He cross section at 10 K, confirming earlier quantum calculations. Our experimental results are supported by high-level scattering calculations and are also expected to apply with para-H2, demonstrating that HCN and HNC have different collisional excitation properties that strongly influence the derived interstellar abundances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA