RESUMO
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto JovemRESUMO
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologiaRESUMO
In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.
RESUMO
Arterial spin labeled (ASL) magnetic resonance imaging (MRI) is the primary method for noninvasively measuring regional brain perfusion in humans. We introduce ASLPrep, a suite of software pipelines that ensure the reproducible and generalizable processing of ASL MRI data.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Marcadores de SpinRESUMO
Social isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a genome-wide associations study (GWAS) was carried out to identify genetic variants that contribute specifically to social isolation behavior (SIB) in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP-based heritability estimate. Using the SIB GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with self-reported friendship scores, comprising items related to friendship quality and quantity, at age 12 and 18 to determine whether genetic predisposition manifests during childhood development. At age 18, friendship scores were associated with the SIB PRS, demonstrating that the genetic factors can predict related social traits in late adolescence. Linkage disequilibrium (LD) score correlation using the SIB GWAS demonstrated genetic correlations with autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), educational attainment, extraversion, and loneliness. However, no evidence of causality was found using a conservative Mendelian randomization approach between SIB and any of the traits in either direction. Genomic Structural Equation Modeling (SEM) revealed a common factor contributing to SIB, neuroticism, loneliness, MDD, and ASD, weakly correlated with a second common factor that contributes to psychiatric and psychotic traits. Our results show that SIB contributes a small heritable component, which is associated genetically with other social traits such as friendship as well as psychiatric disorders.
RESUMO
This review describes the Hierarchical Taxonomy of Psychopathology (HiTOP) model of psychosis-related psychopathology, the psychosis superspectrum. The HiTOP psychosis superspectrum was developed to address shortcomings of traditional diagnoses for psychotic disorders and related conditions including low reliability, arbitrary boundaries between psychopathology and normality, high symptom co-occurrence, and heterogeneity within diagnostic categories. The psychosis superspectrum is a transdiagnostic dimensional model comprising two spectra-psychoticism and detachment-which are in turn broken down into fourteen narrow components, and two auxiliary domains-cognition and functional impairment. The structure of the spectra and their components are shown to parallel the genetic structure of psychosis and related traits. Psychoticism and detachment have distinct patterns of association with urbanicity, migrant and ethnic minority status, childhood adversity, and cannabis use. The superspectrum also provides a useful model for describing the emergence and course of psychosis, as components of the superspectrum are relatively stable over time. Changes in psychoticism predict the onset of psychosis-related psychopathology, whereas changes in detachment and cognition define later course. Implications of the superspectrum for genetic, socio-environmental, and longitudinal research are discussed. A companion review focuses on neurobiology, treatment response, and clinical utility of the superspectrum, and future research directions.
Assuntos
Transtornos Psicóticos , Humanos , Transtornos Psicóticos/genética , Psicopatologia/métodos , Longevidade/genéticaRESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
RESUMO
Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.
Assuntos
Córtex Cerebral , Vias Neurais , Caracteres Sexuais , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Adulto JovemRESUMO
Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.
Assuntos
Encéfalo , Fenótipo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Estudos de Coortes , Feminino , MasculinoRESUMO
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.
Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Feminino , Idoso , Adulto , Criança , Adulto Jovem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Idoso de 80 Anos ou mais , Pré-Escolar , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Tamanho da AmostraRESUMO
To better understand complex human phenotypes, large-scale studies have increasingly collected multiple data modalities across domains such as imaging, mobile health, and physical activity. The properties of each data type often differ substantially and require either separate analyses or extensive processing to obtain comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data structures. For a single data modality, multivariate distance matrix regression provides a distance-based framework for regression accommodating a wide range of data types. However, no distance-based method exists to handle multiple complementary types of data. We propose a novel distance-based regression model, which we refer to as Similarity-based Multimodal Regression (SiMMR), that enables simultaneous regression of multiple modalities through their distance profiles. We demonstrate through simulation, imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations between clinical variables and multimodal data of differing properties and dimensionalities, even with modest sample sizes. We perform experiments to evaluate several different test statistics and provide recommendations for applying our method across a broad range of scenarios.
RESUMO
Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.
Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Humanos , Linguagens de Programação , Fluxo de TrabalhoRESUMO
BACKGROUND: Neurocognitive dysfunction is a transdiagnostic finding in psychopathology, but relationships among cognitive domains and general and specific psychopathology dimensions remain unclear. This study aimed to examine associations between cognition and psychopathology dimensions in a large youth cohort. METHOD: The sample (N = 9350; age 8-21 years) was drawn from the Philadelphia Neurodevelopmental Cohort. Data from structured clinical interviews were modeled using bifactor confirmatory factor analysis (CFA), resulting in an overall psychopathology ('p') factor score and six orthogonal psychopathology dimensions: dysphoria/distress, obsessive-compulsive, behavioral/externalizing, attention-deficit/hyperactivity, phobias, and psychosis. Neurocognitive data were aggregated using correlated-traits CFA into five factors: executive functioning, memory, complex cognition, social cognition, and sensorimotor speed. We examined relationships among specific and general psychopathology dimensions and neurocognitive factors. RESULTS: The final model showed both overall and specific associations between cognitive functioning and psychopathology, with acceptable fit (CFI = 0.91; TLI = 0.90; RMSEA = 0.024; SRMR = 0.054). Overall psychopathology and most psychopathology dimensions were negatively associated with neurocognitive functioning (phobias [p < 0.0005], behavioral/externalizing [p < 0.0005], attention-deficit/hyperactivity [p < 0.0005], psychosis [p < 0.0005 to p < 0.05]), except for dysphoria/distress and obsessive-compulsive symptoms, which were positively associated with complex cognition (p < 0.05 and p < 0.01, respectively). CONCLUSION: By modeling a broad range of cognitive and psychopathology domains in a large, diverse sample of youth, we found aspects of neurocognitive functioning shared across clinical phenotypes, as well as domain-specific patterns. Findings support transdiagnostic examination of cognitive performance to parse variability in the link between neurocognitive functioning and clinical phenotypes.
RESUMO
Reaction time variability (RTV), reflecting fluctuations in response time on cognitive tasks, has been proposed as an endophenotype for many neuropsychiatric disorders. There have been no large-scale genome-wide association studies (GWAS) of RTV and little is known about its genetic underpinnings. Here, we used data from the UK Biobank to conduct a GWAS of RTV in participants of white British ancestry (n = 404,302) as well as a trans-ancestry GWAS meta-analysis (n = 44,873) to assess replication. We found 161 genome-wide significant single nucleotide polymorphisms (SNPs) distributed across 7 genomic loci in our discovery GWAS. Functional annotation of the variants implicated genes involved in synaptic function and neural development. The SNP-based heritability (h2SNP) estimate for RTV was 3%. We investigated genetic correlations between RTV and selected neuropsychological traits using linkage disequilibrium score regression, and found significant correlations with several traits, including a positive correlation with mean reaction time and schizophrenia. Despite the high genetic correlation between RTV and mean reaction time, we demonstrate distinctions in the genetic underpinnings of these traits. Lastly, we assessed the predictive ability of a polygenic score (PGS) for RTV, calculated using PRSice and PRS-CS, and found that the RTV-PGS significantly predicted RTV in independent cohorts, but that the generalisability to other ancestry groups was poor. These results identify genetic underpinnings of RTV, and support the use of RTV as an endophenotype for neurological and psychiatric disorders.
Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Tempo de Reação/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Understanding how traumatic stress affects typical brain development during adolescence is critical to elucidate underlying mechanisms related to both maladaptive functioning and resilience after traumatic exposures. The current study aimed to map deviations from normative ranges of brain gray matter for youths with traumatic exposures. For each cortical and subcortical gray matter region, normative percentiles of variations were established using structural MRI from typically developing youths without any traumatic exposure (n = 245; age range = 8-23) from the Philadelphia Neurodevelopmental Cohort (PNC). The remaining PNC participants with neuroimaging data (n = 1129) were classified as either within the normative range (5-95%), delayed (>95%) or accelerated (<5%) maturational ranges for each region using the normative model. An averaged quantile regression index was calculated across all regions. Mediation models revealed that high traumatic stress load was positively associated with poorer cognitive functioning and greater psychopathology, and these associations were mediated by accelerated gray matter maturation. Furthermore, higher stressor reactivity scores, which represent a less resilient response under traumatic stress, were positively correlated with greater acceleration of gray matter maturation (r = 0.224, 95% CI = [0.17, 0.28], p < 0.001), suggesting that more accelerated maturation was linked to greater stressor response regardless of traumatic stress load. We conclude that traumatic stress is a source of deviation from normative brain development associated with poorer cognitive functioning and more psychopathology in the long run.
Assuntos
Cognição , Substância Cinzenta , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Psicopatologia , Encéfalo/patologiaRESUMO
Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Alprazolam/farmacologia , Emoções , Encéfalo , Tonsila do Cerebelo , Mapeamento Encefálico , Imageamento por Ressonância MagnéticaRESUMO
Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: The Penn Computerized Neurocognitive Battery is an efficient tool for assessing brain-behavior domains, and its efficiency was augmented via computerized adaptive testing (CAT). This battery requires validation in a separate sample to establish psychometric properties. METHODS: In a mixed community/clinical sample of N = 307 18-to-35-year-olds, we tested the relationships of the CAT tests with the full-form tests. We compared discriminability among recruitment groups (psychosis, mood, control) and examined how their scores relate to demographics. CAT-Full relationships were evaluated based on a minimum inter-test correlation of 0.70 or an inter-test correlation within at least 0.10 of the full-form correlation with a previous administration of the full battery. Differences in criterion relationships were tested via mixed models. RESULTS: Most tests (15/17) met the minimum criteria for replacing the full-form with the updated CAT version (mean r = 0.67; range = 0.53-0.80) when compared to relationships of the full-forms with previous administrations of the full-forms (mean r = 0.68; range = 0.50-0.85). Most (16/17) CAT-based relationships with diagnostics and other validity criteria were indistinguishable (interaction p > 0.05) from their full-form counterparts. CONCLUSIONS: The updated CNB shows psychometric properties acceptable for research. The full-forms of some tests should be retained due to insufficient time savings to justify the loss in precision.
Assuntos
Teste Adaptativo Computadorizado , Transtornos Mentais , Humanos , Encéfalo , Psicometria , Cognição , Reprodutibilidade dos TestesRESUMO
Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.
Assuntos
Função Executiva , Memória de Curto Prazo , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Escolaridade , Pais , Imageamento por Ressonância Magnética/métodos , Classe Social , Encéfalo/fisiologiaRESUMO
OBJECTIVE: Adults with binge-eating disorder (BED), compared with those without BED, demonstrate higher blood-oxygen-level-dependent (BOLD) response to food cues in reward-related regions of the brain. It is not known whether cognitive behavioral therapy (CBT) can reverse this reward system hyperactivation. This randomized controlled trial (RCT) assessed changes in BOLD response to binge-eating cues following CBT versus wait-list control (WLC). METHOD: Females with BED (N = 40) were randomized to CBT or WLC. Participants completed assessments at baseline and 16 weeks including measures of eating and appetite and functional magnetic resonance imaging (fMRI) to measure BOLD response while listening to personalized scripts of binge-eating and neutral-relaxing cues. Data were analyzed using general linear models with mixed effects. RESULTS: Overall retention rate was 87.5%. CBT achieved significantly greater reductions in binge-eating episodes than WLC (mean ± standard error decline of 14.6 ± 2.7 vs. 5.7 ± 2.8 episodes in the past 28 days, respectively; p = 0.03). CBT and WLC did not differ significantly in changes in neural responses to binge-eating stimuli during the fMRI sessions. Compared with WLC, CBT had significantly greater improvements in reward-based eating drive, disinhibition, and hunger as assessed by questionnaires (ps < 0.05). DISCUSSION: CBT was effective in reducing binge eating, but, contrary to our hypothesis, CBT did not improve BOLD response to auditory binge-eating stimuli in reward regions of the brain. Further studies are needed to assess mechanisms underlying improvements with CBT for BED. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03604172.