Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Immunol ; 24(9): 1473-1486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580603

RESUMO

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Assuntos
Mucosa , Salmonella typhimurium , Humanos , Camundongos , Animais , Linfócitos T , Imunidade nas Mucosas
2.
Eur J Immunol ; 52(11): 1805-1818, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178227

RESUMO

Extracellular ATP activates the P2X7 receptor, leading to inflammasome activation and release of pro-inflammatory cytokines in monocytes. However, a detailed analysis of P2X7 receptor expression and function in the human T cell compartment has not been reported. Here, we used a P2X7-specific nanobody to assess cell membrane expression and function of P2X7 on peripheral T lymphocyte subsets. The results show that innate-like T cells, which effectively react to innate stimuli by secreting high amounts of pro-inflammatory cytokines, have the highest expression of P2X7 in the human T cell compartment. Using Tγδ cells as example for an innate-like lymphocyte population, we demonstrate that these cells are more sensitive to P2X7 receptor activation than conventional T cells, affecting fundamental cellular mechanisms like calcium signaling and ATP-induced cell death. The increased susceptibility of innate-like T cells to P2X7-mediated cell death provides a mechanism to control their homeostasis under inflammatory conditions. Understanding the expression and function of P2X7 on human immune cells is essential to assume the benefits and consequences of newly developed P2X7-based therapeutic approaches.


Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Morte Celular , Monócitos/metabolismo , Citocinas/metabolismo
3.
Handb Exp Pharmacol ; 278: 57-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36443544

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger known to date. Major steps elucidating metabolism and Ca2+ mobilizing activity of NAADP are reviewed, with emphasis on a novel redox cycle between the inactive reduced form, NAADPH, and the active oxidized form, NAADP. Oxidation from NAADPH to NAADP is catalyzed in cell free system by (dual) NADPH oxidases NOX5, DUOX1, and DUOX2, whereas reduction from NAADP to NAADPH is catalyzed by glucose 6-phosphate dehydrogenase. Using different knockout models for NOX and DUOX isozymes, DUOX2 was identified as NAADP forming enzyme in early T-cell activation.Recently, receptors or binding proteins for NAADP were identified: hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule associated homolog 2 (JPT2) and Lsm12 are small cytosolic proteins that bind NAADP. In addition, they interact with NAADP-sensitive Ca2+ channels, such as ryanodine receptor type 1 (RYR1) or two-pore channels (TPC).Due to its role as Ca2+ mobilizing second messenger in T cells, NAADP's involvement in inflammation is also reviewed. In the central nervous system (CNS), NAADP regulates autoimmunity because NAADP antagonism affects a couple of T-cell migration and re-activation events, e.g. secretion of the pro-inflammatory cytokine interleukin-17. Further, the role of NAADP in transdifferentiation of IL-17-producing Th17 cells into T regulatory type 1 cells in vitro and in vivo is discussed.


Assuntos
Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Oxidases Duais/metabolismo , Sinalização do Cálcio/fisiologia , NADP/metabolismo , Cálcio/metabolismo
4.
Artigo em Alemão | MEDLINE | ID: mdl-37921871

RESUMO

October 2019 saw the launch of iMED DENT, the first model study program in dentistry in Germany. The launch was preceded by a development process lasting several years in which European locations, among others, with innovative dental study programs were initially visited. The central reform objective of the model study program was then defined: the development, implementation, and ongoing optimization of an interdisciplinary curriculum with a scientific focus that integrates theoretical and practical dental content. Further steps were the development of the study program objectives and the modular study structure. The latter consists of the three parts: "Normal Function," "From Symptom to Disease," and "Therapy." In the curriculum, the central area of dentistry is flanked by basic and clinical medical subjects. This article reports on the important development steps of the model study program, its structure, and quality assurance measures. First evaluations of the achievement of study program objectives and the need for optimization in the current curriculum are presented.


Assuntos
Currículo , Odontologia , Humanos , Alemanha , Estudos Longitudinais
5.
Kidney Int ; 101(6): 1186-1199, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271934

RESUMO

Calcimimetic agents allosterically increase the calcium ion sensitivity of the calcium-sensing receptor (CaSR), which is expressed in the tubular system and to a lesser extent in podocytes. Activation of this receptor can reduce glomerular proteinuria and structural damage in proteinuric animal models. However, the precise role of the podocyte CaSR remains unclear. Here, a CaSR knockdown in cultured murine podocytes and a podocyte-specific CaSR knockout in BALB/c mice were generated to study its role in proteinuria and kidney function. Podocyte CaSR knockdown abolished the calcimimetic R-568 mediated calcium ion-influx, disrupted the actin cytoskeleton, and reduced cellular attachment and migration velocity. Adriamycin-induced proteinuria enhanced glomerular CaSR expression in wild-type mice. Albuminuria, podocyte foot process effacement, podocyte loss and glomerular sclerosis were significantly more pronounced in adriamycin-treated podocyte-specific CaSR knockout mice compared to wild-type littermates. Co-treatment of wild-type mice with adriamycin and the calcimimetic cinacalcet reduced proteinuria in wild-type, but not in podocyte-specific CaSR knockout mice. Additionally, four children with nephrotic syndrome, whose parents objected to glucocorticoid therapy, were treated with cinacalcet for one to 33 days. Proteinuria declined transiently by up to 96%, serum albumin increased, and edema resolved. Thus, activation of podocyte CaSR regulates key podocyte functions in vitro and reduced toxin-induced proteinuria and glomerular damage in mice. Hence, our findings suggest a potential novel role of CaSR signaling in control of glomerular disease.


Assuntos
Nefropatias , Podócitos , Animais , Cálcio/metabolismo , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Doxorrubicina/toxicidade , Humanos , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
6.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328585

RESUMO

cADPR is a second messenger that releases Ca2+ from intracellular stores via the ryanodine receptor. Over more than 15 years, it has been controversially discussed whether cADPR also contributes to the activation of the nucleotide-gated cation channel TRPM2. While some groups have observed activation of TRPM2 by cADPR alone or in synergy with ADPR, sometimes only at 37 °C, others have argued that this is due to the contamination of cADPR by ADPR. The identification of a novel nucleotide-binding site in the N-terminus of TRPM2 that binds ADPR in a horseshoe-like conformation resembling cADPR as well as the cADPR antagonist 8-Br-cADPR, and another report that demonstrates activation of TRPM2 by binding of cADPR to the NUDT9H domain raised the question again and led us to revisit the topic. Here we show that (i) the N-terminal MHR1/2 domain and the C-terminal NUDT9H domain are required for activation of human TRPM2 by ADPR and 2'-deoxy-ADPR (2dADPR), (ii) that pure cADPR does not activate TRPM2 under a variety of conditions that have previously been shown to result in channel activation, (iii) the cADPR antagonist 8-Br-cADPR also inhibits activation of TRPM2 by ADPR, and (iv) cADPR does not bind to the MHR1/2 domain of TRPM2 while ADPR does.


Assuntos
ADP-Ribose Cíclica , Canais de Cátion TRPM , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio , ADP-Ribose Cíclica/metabolismo , Humanos , Canais de Cátion TRPM/metabolismo
7.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585307

RESUMO

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Assuntos
Neoplasias Colorretais/metabolismo , Linfotoxina-alfa/metabolismo , Receptores de Interleucina/metabolismo , Idoso , Animais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética , Taxa de Sobrevida
8.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769223

RESUMO

Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for static images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to time-dependent image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.


Assuntos
Algoritmos , Sinalização do Cálcio , Cálcio/metabolismo , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Humanos , Células Jurkat , Microscopia de Fluorescência , Razão Sinal-Ruído
9.
J Interprof Care ; 35(2): 248-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32233887

RESUMO

Emotional experiences in the context of learning play an important role in the handling of learning processes. The aim of this study was to track participants' self-reported academic emotions using a momentary assessment design with 14 measurement points to identify patterns and emotional states. In a 2-week course, 35 medical and nursing students were assigned to work together in small groups and assess real cardiac patients' histories, treatment, and care. Thirty-two students participated in the study. Within means, standard deviations, and intra-class correlation coefficients were assessed to consider the relative proportion of within- and between-individual variation. Type of activity, time of day and group effects were investigated by means of ANOVAs or Mann-Whitney U tests. Results show a heterogeneous pattern of positive moods and only marginal occurrence of negative moods. Within variation was bigger than between variation of most positive moods. The highest positive affect was reported during a reflective seminar. Negative affect was higher during a stressful task. Medical and nursing students only differed in terms of their nervousness. It was also revealed that the variation in moods differed to a great extent between the small groups. The findings support the importance of academic emotions in interprofessional learning. Designing IPE to foster positive emotions during the learning processes might help students to be able to apply their knowledge and insights on the benefits of interprofessional collaboration in future working environments.


Assuntos
Relações Interprofissionais , Estudantes de Enfermagem , Currículo , Emoções , Humanos , Aprendizagem
10.
Molecules ; 25(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942537

RESUMO

Ca2+-mobilizing adenine nucleotide second messengers cyclic adenosine diphosphoribose, (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), adenosine diphosphoribose (ADPR), and 2'deoxy-ADPR were discovered since the late 1980s. They either release Ca2+ from endogenous Ca2+ stores, e.g., endoplasmic reticulum or acidic organelles, or evoke Ca2+ entry by directly activating a Ca2+ channel in the plasma membrane. For 25 years, Professor Barry Potter has been one of the major medicinal chemists in this topical area, designing and contributing numerous analogues to develop structure-activity relationships (SAR) as a basis for tool development in biochemistry and cell biology and for lead development in proof-of-concept studies in disease models. With this review, I wish to acknowledge our 25-year-long collaboration on Ca2+-mobilizing adenine nucleotide second messengers as a major part of Professor Potter's scientific lifetime achievements on the occasion of his retirement in 2020.


Assuntos
Nucleotídeos de Adenina/metabolismo , Cálcio/metabolismo , Nucleotídeos de Adenina/química , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , NADP/análogos & derivados , NADP/química , NADP/metabolismo , Sistemas do Segundo Mensageiro , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Biochem Soc Trans ; 47(1): 329-337, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30674608

RESUMO

Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.


Assuntos
Nucleotídeos de Adenina/metabolismo , Inflamação/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Sistemas do Segundo Mensageiro , Linfócitos T/imunologia , Trifosfato de Adenosina/metabolismo , Humanos , Macrófagos/metabolismo , NAD/metabolismo , Neutrófilos/metabolismo , Comunicação Parácrina , Transdução de Sinais , Linfócitos T/metabolismo
12.
Nat Chem Biol ; 13(9): 1036-1044, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671679

RESUMO

Transient receptor potential melastatin 2 (TRPM2) is a ligand-gated Ca2+-permeable nonselective cation channel. Whereas physiological stimuli, such as chemotactic agents, evoke controlled Ca2+ signals via TRPM2, pathophysiological stimuli such as reactive oxygen species and genotoxic stress result in prolonged TRPM2-mediated Ca2+ entry and, consequently, apoptosis. To date, adenosine 5'-diphosphoribose (ADPR) has been assumed to be the main agonist for TRPM2. Here we show that 2'-deoxy-ADPR was a significantly better TRPM2 agonist, inducing 10.4-fold higher whole-cell currents at saturation. Mechanistically, this increased activity was caused by a decreased rate of inactivation and higher average open probability. Using high-performance liquid chromatography (HPLC) and mass spectrometry, we detected endogenous 2'-deoxy-ADPR in Jurkat T lymphocytes. Consistently, cytosolic nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) and nicotinamide adenine dinucleotide (NAD)-glycohydrolase CD38 sequentially catalyzed the synthesis of 2'-deoxy-ADPR from nicotinamide mononucleotide (NMN) and 2'-deoxy-ATP in vitro. Thus, 2'-deoxy-ADPR is an endogenous TRPM2 superagonist that may act as a cell signaling molecule.


Assuntos
Adenosina Difosfato Ribose/análogos & derivados , Clusterina/agonistas , ADP-Ribosil Ciclase 1/química , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/farmacologia , Cromatografia Líquida de Alta Pressão , Humanos , Peróxido de Hidrogênio/química , Células Jurkat , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
13.
J Org Chem ; 84(10): 6143-6157, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30978018

RESUMO

TRPM2 (transient receptor potential cation channel, subfamily M, member 2) is a nonselective cation channel involved in the response to oxidative stress and in inflammation. Its role in autoimmune and neurodegenerative diseases makes it an attractive pharmacological target. Binding of the nucleotide adenosine 5'-diphosphate ribose (ADPR) to the cytosolic NUDT9 homology (NUDT9 H) domain activates the channel. A detailed understanding of how ADPR interacts with the TRPM2 ligand binding domain is lacking, hampering the rational design of modulators, but the terminal ribose of ADPR is known to be essential for activation. To study its role in more detail, we designed synthetic routes to novel analogues of ADPR and 2'-deoxy-ADPR that were modified only by removal of a single hydroxyl group from the terminal ribose. The ADPR analogues were obtained by coupling nucleoside phosphorimidazolides to deoxysugar phosphates. The corresponding C2″-based analogues proved to be unstable. The C1″- and C3″-ADPR analogues were evaluated electrophysiologically by patch-clamp in TRPM2-expressing HEK293 cells. In addition, a compound with all hydroxyl groups of the terminal ribose blocked as its 1″-ß- O-methyl-2″,3″- O-isopropylidene derivative was evaluated. Removal of either C1″ or C3″ hydroxyl groups from ADPR resulted in loss of agonist activity. Both these modifications and blocking all three hydroxyl groups resulted in TRPM2 antagonists. Our results demonstrate the critical role of these hydroxyl groups in channel activation.


Assuntos
Adenosina Difosfato Ribose/análogos & derivados , Sondas Moleculares/síntese química , Sondas Moleculares/metabolismo , Canais de Cátion TRPM/metabolismo , Técnicas de Química Sintética , Células HEK293 , Humanos , Modelos Moleculares , Sondas Moleculares/química , Conformação Proteica , Canais de Cátion TRPM/química
14.
Purinergic Signal ; 15(2): 155-166, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31016551

RESUMO

ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a variety of external stimuli such as gating of the P2X7 receptor. We used Yac-1 murine lymphoma cells to study P2X7-mediated ATP release. These cells co-express P2X7 and ADP-ribosyltransferase ARTC2, permitting gating of P2X7 by NAD+-dependent ADP-ribosylation without the need to add exogenous ATP. Yac-1 cells released ATP into the extracellular space within minutes after stimulation with NAD+. This was blocked by pre-incubation with the inhibitory P2X7-specific nanobody 13A7. Gating of P2X7 for 3 h significantly decreased intracellular ATP levels in living cells, but these had returned to normal by 20 h. P2X7-mediated ATP release was dependent on a rise in cytosolic calcium and the depletion of intracellular potassium, but was not blocked by inhibitors of pannexins or connexins. We used genetically encoded FRET-based ATP sensors targeted to the cytosol to image P2X7-mediated changes in the distribution of ATP in 3T3 fibroblasts co-expressing P2X7 and ARTC2 and in Yac-1 cells. In response to NAD+, we observed a marked depletion of ATP in the cytosol. This study demonstrates the potential of ATP sensors as tools to study regulated ATP release by other cell types under other conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Citosol/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos
15.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 977-986, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27913206

RESUMO

Ca2+ signaling is a major signal transduction pathway involved in T cell activation, but also in apoptosis of T cells. Since T cells make use of several Ca2+-mobilizing second messengers, such as nicotinic acid adenine dinucleotide phosphate, d-myo-inositol 1,4,5-trisphosphate, and cyclic ADP-ribose, we intended to analyze luminal Ca2+ concentration upon cell activation. Mag-Fluo4/AM, a low-affinity Ca2+ dye known to localize to the endoplasmic reticular lumen in many cell types, showed superior brightness and bleaching stability, but, surprisingly, co-localized with mito-tracker, but not with ER-tracker in Jurkat T cells. Thus, we used Mag-Fluo4/AM to monitor the free luminal mitochondrial Ca2+ concentration ([Ca2+]mito) in these cells. Simultaneous analysis of the free cytosolic Ca2+ concentration ([Ca2+]i) and [Ca2+]mito upon cell stimulation revealed that Ca2+ signals in the majority of mitochondria were initiated at [Ca2+ ]i≥approx. 400 to 550nM. In primary murine CD4+ T cells, Mag-Fluo4 showed two different localization patterns: either co-localization with mito-tracker, as in Jurkat T cells, or with ER-tracker. Thus, in single primary murine CD4+ T cells, either decreases of [Ca2+ ]ER or increases of [Ca2+ ]mito were observed upon cell stimulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Compostos de Anilina/metabolismo , Cálcio/metabolismo , Organelas/metabolismo , Xantenos/metabolismo , Humanos , Células Jurkat , Mitocôndrias/metabolismo
16.
J Physiol ; 596(14): 2735-2743, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29635794

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is currently the most potent endogenous Ca2+ mobilizing second messenger. Upon specific extracellular stimulation, rapid production of NAADP has been observed in different cell types from sea urchin eggs to mammalian cells. More than 20 years after the discovery of NAADP, there is still controversy surrounding its metabolism and target receptors/ion channels and organelles. This article briefly reviews recent developments in the NAADP field. Besides the metabolism of NAADP, this review focuses on assumed organelles and putative targets, e.g. ion channels, with special emphasis on ryanodine receptor type 1 (RyR1) and two-pore channels (TPCs). The role of NAADP as a Ca2+ trigger is also discussed and the importance of NAADP in the formation of initial Ca2+ microdomains is highlighted.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , NADP/análogos & derivados , Organelas/metabolismo , Animais , Humanos , NADP/metabolismo
17.
Biochem J ; 474(13): 2159-2175, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28515263

RESUMO

TRPM2 (transient receptor potential channel, subfamily melastatin, member 2) is a Ca2+-permeable non-selective cation channel activated by the binding of adenosine 5'-diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain (NUDT9 homology domain). Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of many human diseases, rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP (adenosine 5'-diphosphate) alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Arginina/metabolismo , Canais de Cátion TRPM/metabolismo , Tirosina/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Sequência de Aminoácidos , Arginina/química , Arginina/genética , Cálcio/metabolismo , Sinalização do Cálcio , Células HEK293 , Humanos , Ativação do Canal Iônico , Mutagênese Sítio-Dirigida , Mutação/genética , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Pirofosfatases/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Tirosina/química , Tirosina/genética
18.
Molecules ; 23(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428589

RESUMO

Adenine nucleotide (AN) 2nd messengers, such as 3',5'-cyclic adenosine monophosphate (cAMP), are central elements of intracellular signaling, but many details of their underlying processes remain elusive. Like all nucleotides, cyclic nucleotide monophosphates (cNMPs) are net-negatively charged at physiologic pH which limits their applicability in cell-based settings. Thus, many cellular assays rely on sophisticated techniques like microinjection or electroporation. This setup is not feasible for medium- to high-throughput formats, and the mechanic stress that cells are exposed to raises the probability of interfering artefacts or false-positives. Here, we present a short and flexible chemical route yielding membrane-permeable, bio-reversibly masked cNMPs for which we employed the octanoyloxybenzyl (OB) group. We further show hydrolysis studies on chemical stability and enzymatic activation, and present results of real-time assays, where we used cAMP and Ca2+ live cell imaging to demonstrate high permeability and prompt intracellular conversion of some selected masked cNMPs. Based on these results, our novel OB-masked cNMPs constitute valuable precursor-tools for non-invasive studies on intracellular signaling.


Assuntos
Benzofenonas/química , Técnicas Biossensoriais , Caprilatos/química , Permeabilidade da Membrana Celular , Nucleotídeos Cíclicos/metabolismo , Bioensaio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nucleotídeos Cíclicos/química
19.
Artigo em Alemão | MEDLINE | ID: mdl-29256182

RESUMO

Medical science is constantly evolving. Teaching and training must keep pace with these innovations and react in a flexible fashion to new requirements. Model medical education programs, which are governed by the provisions of Sect. 41 of the Regulations for the Licensing of Medical Practitioners (ÄAppO), permit the piloting of innovative teaching programs, which support the continuous development of medical training through incorporation into the standard curricula. This paper reports on the model study programs at the University Medical Centre Hamburg-Eppendorf (iMED) and Charité - University Medicine Berlin (MSM). It describes the reform objectives, the curricula and selected projects accompanying both models and concludes by exploring the significance of various training concepts for the development of medical education.


Assuntos
Educação Médica/organização & administração , Modelos Educacionais , Berlim , Pesquisa Biomédica/legislação & jurisprudência , Pesquisa Biomédica/tendências , Currículo/tendências , Educação Médica/legislação & jurisprudência , Educação Médica/tendências , Educação Médica Continuada/legislação & jurisprudência , Educação Médica Continuada/organização & administração , Educação Médica Continuada/tendências , Educação de Pós-Graduação em Medicina/legislação & jurisprudência , Educação de Pós-Graduação em Medicina/organização & administração , Educação de Pós-Graduação em Medicina/tendências , Previsões , Alemanha , Licenciamento em Medicina/legislação & jurisprudência , Licenciamento em Medicina/tendências
20.
Biochim Biophys Acta ; 1863(6 Pt B): 1379-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26804481

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+) mobilizing second messenger that belongs to the superfamily of regulatory adenine nucleotides. Though NAADP has been known since 20 years, several aspects of its metabolism and molecular mode of action are still under discussion. Though the importance of the type 1 ryanodine receptor was discovered and published already in 2002 Hohenegger et al. (2002 Oct 15), recent data re-emphasize these original findings in pancreatic acinar cells and in T-lymphocytes. Here we review recent developments in NAADP formation and metabolism, putative target Ca(2+) channels for NAADP with special emphasis on the type 1 ryanodine receptor, and NAADP binding proteins. The latter are basis for a unifying hypothesis for NAADP action. Finally, the role of NAADP in T cell Ca(2+) signaling and activation is discussed. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.


Assuntos
Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , NADP/análogos & derivados , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Humanos , Ativação Linfocitária , Modelos Biológicos , NADP/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA