Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935568

RESUMO

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Assuntos
Miopatias Distais , Humanos , Conectina/genética , Miopatias Distais/genética , Variações do Número de Cópias de DNA/genética , Músculo Esquelético/patologia , Mutação/genética , Fenótipo
2.
Genet Med ; 25(2): 100327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36422518

RESUMO

PURPOSE: CAG/CAA repeat expansions in TBP>49 are responsible for spinocerebellar ataxia (SCA) type 17 (SCA17). We previously detected cosegregation of STUB1 variants causing SCA48 with intermediate alleles of TBP in 2 families. This cosegregation questions the existence of SCA48 as a monogenic disease. METHODS: We systematically sequenced TBP repeats in 34 probands of dominant ataxia families with STUB1 variants. In addition, we searched for pathogenic STUB1 variants in probands with expanded alleles of TBP>49 (n = 2) or intermediate alleles of TBP≥40 (n = 47). RESULTS: STUB1 variants were found in half of the TBP40-49 cohort. Mirroring this finding, TBP40-49 alleles were detected in 40% of STUB1 probands. The longer the TBP repeat length, the more likely the occurrence of cognitive impairment (P = .0129) and the faster the disease progression until death (P = .0003). Importantly, 13 STUB1 probands presenting with the full SCA48 clinical phenotype had normal TBP37-39 alleles, excluding digenic inheritance as the sole mode. CONCLUSION: We show that intermediate TBP40-49 alleles act as disease modifiers of SCA48 rather than a STUB1/TBP digenic model. This distinction from what has been proposed before has crucial consequences for genetic counseling in SCA48.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxia Cerebelar/genética , Fenótipo , Alelos , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética
3.
Genet Med ; 25(1): 76-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331550

RESUMO

PURPOSE: Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS: We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS: Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION: We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.


Assuntos
Epilepsia , Paraplegia Espástica Hereditária , Humanos , Espectrina/genética , Mutação , Epilepsia/genética , Fenótipo , Ataxia , Paraplegia Espástica Hereditária/genética , Convulsões , Paraplegia , Linhagem
4.
J Peripher Nerv Syst ; 28(3): 359-367, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306961

RESUMO

BACKGROUND: Mutations in the Early-Growth Response 2 (EGR2) gene cause various hereditary neuropathies, including demyelinating Charcot-Marie-Tooth (CMT) disease type 1D (CMT1D), congenital hypomyelinating neuropathy type 1 (CHN1), Déjerine-Sottas syndrome (DSS), and axonal CMT (CMT2). METHODS: In this study, we identified 14 patients with heterozygous EGR2 mutations diagnosed between 2000 and 2022. RESULTS: Mean age was 44 years (15-70), 10 patients were female (71%), and mean disease duration was 28 years (1-56). Disease onset was before age 15 years in nine cases (64%), after age 35 years in four cases (28%), and one patient aged 26 years was asymptomatic (7%). All symptomatic patients had pes cavus and distal lower limbs weakness (100%). Distal lower limbs sensory symptoms were observed in 86% of cases, hand atrophy in 71%, and scoliosis in 21%. Nerve conduction studies showed a predominantly demyelinating sensorimotor neuropathy in all cases (100%), and five patients needed walking assistance after a mean disease duration of 50 years (47-56) (36%). Three patients were misdiagnosed as inflammatory neuropathy and treated with immunosuppressive drugs for years before diagnosis was corrected. Two patients presented with an additional neurologic disorder, including Steinert's myotonic dystrophy and spinocerebellar ataxia (14%). Eight EGR2 gene mutations were found, including four previously undescribed. INTERPRETATION: Our findings demonstrate EGR2 gene-related hereditary neuropathies are rare and slowly progressive demyelinating neuropathies with two major clinical presentations, including a childhood-onset variant and an adult-onset variant which may mimic inflammatory neuropathy. Our study also expands the genotypic spectrum of EGR2 gene mutations.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Adulto , Humanos , Feminino , Criança , Masculino , Distribuição por Idade , Doença de Charcot-Marie-Tooth/genética , Mutação , Genótipo , Fenótipo , Proteína 2 de Resposta de Crescimento Precoce/genética
5.
Brain ; 143(2): 452-466, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040565

RESUMO

Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.


Assuntos
Doenças Musculares/genética , Mutação/genética , Miotonia Congênita/genética , Retículo Sarcoplasmático/metabolismo , Adolescente , Adulto , ATPases Transportadoras de Cálcio/genética , Criança , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Fenótipo , Adulto Jovem
6.
Neurogenetics ; 21(1): 29-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655922

RESUMO

Giant axonal neuropathy (GAN) is an autosomal recessive disease caused by mutations in the GAN gene encoding gigaxonin. Patients develop a progressive sensorimotor neuropathy affecting peripheral nervous system (PNS) and central nervous system (CNS). Methods: In this multicenter observational retrospective study, we recorded French patients with GAN mutations, and 10 patients were identified. Mean age of patients was 9.7 years (2-18), eight patients were female (80%), and all patients met infant developmental milestones and had a family history of consanguinity. Mean age at disease onset was 3.3 years (1-5), and progressive cerebellar ataxia and distal motor weakness were the initial symptoms in all cases. Proximal motor weakness and bulbar symptoms appeared at a mean age of 12 years (8-14), and patients used a wheelchair at a mean age of 16 years (14-18). One patient died at age 18 years from aspiration pneumonia. In all cases, nerve conduction studies showed a mixed demyelinating and axonal sensorimotor neuropathy and MRI showed brain and cerebellum white matter abnormalities. Polyneuropathy and encephalopathy both aggravated during the course of the disease. Patients also showed a variety of associated findings, including curly hair (100% of cases), pes cavus (80%), ophthalmic abnormalities (30%), and scoliosis (30%). Five new GAN mutations were found, including the first synonymous mutation and a large intragenic deletion. Our findings expand the genotypic spectrum of GAN mutations, with relevant implications for molecular analysis of this gene, and confirm that GAN is an age-related progressive neurodegenerative disease involving PNS and CNS.


Assuntos
Proteínas do Citoesqueleto/genética , Neuropatia Axonal Gigante/genética , Mutação , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Neuropatia Axonal Gigante/epidemiologia , Neuropatia Axonal Gigante/patologia , Neuropatia Axonal Gigante/fisiopatologia , Humanos , Masculino , Estudos Retrospectivos
7.
Pediatr Radiol ; 48(10): 1463-1471, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926145

RESUMO

BACKGROUND: The imaging features of Huntington disease are well known in adults, unlike in juvenile-onset Huntington disease. OBJECTIVE: To conduct a morphometric magnetic resonance imaging (MRI) analysis in three juvenile Huntington disease patients (ages 2, 4 and 6 years old) to determine whether quantitative cerebral and cerebellar morphological metrics may provide diagnostically interesting patterns of cerebellar and cerebellar atrophy. MATERIALS AND METHODS: We report the cases of three siblings with extremely early presentations of juvenile Huntington disease associated with dramatic expansions of the morbid paternal allele from 43 to more than 100 CAG trinucleotide repeats. Automatic segmentation of MRI images of the cerebrum and cerebellum was performed and volumes of cerebral substructures and cerebellar lobules of juvenile Huntington disease patients were compared to those of 30 normal gender- and age-matched controls. Juvenile Huntington disease segmented volumes were compared to those of age-matched controls by using a z-score. RESULTS: Three cerebral substructures (caudate nucleus, putamen and globus pallidus) demonstrated a reduction in size of more than three standard deviations from the normal mean although it was not salient in one of them at clinical reading and was not diagnosed. The size of cerebellum lobules, cerebellum grey matter and cerebellum cortex was reduced by more than two standard deviations in the three patients. The cerebellar atrophy was predominant in the posterior lobe. CONCLUSION: Our study sheds light on atrophic cerebral and cerebellar structures in juvenile Huntington disease. Automatic segmentations of the cerebellum provide patterns that may be of diagnostic interest in this disease.


Assuntos
Doenças Cerebelares/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Atrofia/diagnóstico por imagem , Atrofia/patologia , Doenças Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Humanos , Doença de Huntington/patologia , Lactente , Masculino , Irmãos
8.
Ann Neurol ; 78(6): 871-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288984

RESUMO

OBJECTIVE: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS: A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS: We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION: Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.


Assuntos
Biomarcadores , Proteínas de Choque Térmico/fisiologia , Mitocôndrias , Espasticidade Muscular/diagnóstico , Ataxias Espinocerebelares/congênito , Adolescente , Adulto , Técnicas de Cultura de Células , Criança , Estudos de Coortes , Feminino , Fibroblastos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Mutação , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Adulto Jovem
9.
Mov Disord ; 31(1): 62-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26388117

RESUMO

BACKGROUND: Friedreich's ataxia usually occurs before the age of 25. Rare variants have been described, such as late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, occurring after 25 and 40 years, respectively. We describe the clinical, functional, and molecular findings from a large series of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia and compare them with typical-onset Friedreich's ataxia. METHODS: Phenotypic and genotypic comparison of 44 late-onset Friedreich's ataxia, 30 very late-onset Friedreich's ataxia, and 180 typical Friedreich's ataxia was undertaken. RESULTS: Delayed-onset Friedreich's ataxia (late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia) had less frequently dysarthria, abolished tendon reflexes, extensor plantar reflexes, weakness, amyotrophy, ganglionopathy, cerebellar atrophy, scoliosis, and cardiomyopathy than typical-onset Friedreich's ataxia, along with less severe functional disability and shorter GAA expansion on the smaller allele (P < 0.001). Delayed-onset Friedreich's ataxia had lower scale for the assessment and rating of ataxia and spinocerebellar degeneration functional scores and longer disease duration before wheelchair confinement (P < 0.001). Both GAA expansions were negatively correlated to age at disease onset (P < 0.001), but the smaller GAA expansion accounted for 62.9% of age at onset variation and the larger GAA expansion for 15.6%. In this comparative study of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, no differences between these phenotypes were demonstrated. CONCLUSION: Typical- and delayed-onset Friedreich's ataxia are different and Friedreich's ataxia is heterogeneous. Late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia appear to belong to the same clinical and molecular continuum and should be considered together as "delayed-onset Friedreich's ataxia." As the most frequently inherited ataxia, Friedreich's ataxia should be considered facing compatible pictures, including atypical phenotypes (spastic ataxia, retained reflexes, lack of dysarthria, and lack of extraneurological signs), delayed disease onset (even after 60 years of age), and/or slow disease progression.


Assuntos
Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Idoso , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Criança , Eletrocardiografia , Feminino , Ataxia de Friedreich/sangue , Ataxia de Friedreich/fisiopatologia , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Adulto Jovem
10.
Brain ; 138(Pt 8): 2347-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063658

RESUMO

Cerebral small vessel disease represents a heterogeneous group of disorders leading to stroke and cognitive impairment. While most small vessel diseases appear sporadic and related to age and hypertension, several early-onset monogenic forms have also been reported. However, only a minority of patients with familial small vessel disease carry mutations in one of known small vessel disease genes. We used whole exome sequencing to identify candidate genes in an autosomal dominant small vessel disease family in which known small vessel disease genes had been excluded, and subsequently screened all candidate genes in 201 unrelated probands with a familial small vessel disease of unknown aetiology, using high throughput multiplex polymerase chain reaction and next generation sequencing. A heterozygous HTRA1 variant (R166L), absent from 1000 Genomes and Exome Variant Server databases and predicted to be deleterious by in silico tools, was identified in all affected members of the index family. Ten probands of 201 additional unrelated and affected probands (4.97%) harboured a heterozygous HTRA1 mutation predicted to be damaging. There was a highly significant difference in the number of likely deleterious variants in cases compared to controls (P = 4.2 × 10(-6); odds ratio = 15.4; 95% confidence interval = 4.9-45.5), strongly suggesting causality. Seven of these variants were located within or close to the HTRA1 protease domain, three were in the N-terminal domain of unknown function and one in the C-terminal PDZ domain. In vitro activity analysis of HTRA1 mutants demonstrated a loss of function effect. Clinical features of this autosomal dominant small vessel disease differ from those of CARASIL and CADASIL by a later age of onset and the absence of the typical extraneurological features of CARASIL. They are similar to those of sporadic small vessel disease, except for their familial nature. Our data demonstrate that heterozygous HTRA1 mutations are an important cause of familial small vessel disease, and that screening of HTRA1 should be considered in all patients with a hereditary small vessel disease of unknown aetiology.


Assuntos
CADASIL/genética , Predisposição Genética para Doença , Mutação/genética , Serina Endopeptidases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Heterozigoto , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade
11.
Brain ; 138(Pt 2): 284-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527826

RESUMO

Inherited white matter diseases are rare and heterogeneous disorders usually encountered in infancy. Adult-onset forms are increasingly recognized. Our objectives were to determine relative frequencies of genetic leukoencephalopathies in a cohort of adult-onset patients and to evaluate the effectiveness of a systematic diagnostic approach. Inclusion criteria of this retrospective study were: (i) symmetrical involvement of white matter on the first available brain MRI; (ii) age of onset above 16 years. Patients with acquired diseases were excluded. Magnetic resonance imaging analysis identified three groups (vascular, cavitary and non-vascular/non-cavitary) in which distinct genetic and/or biochemical testing were realized. One hundred and fifty-four patients (male/female = 60/94) with adult-onset leukoencephalopathies were identified. Mean age of onset was 38.6 years. In the vascular group, 41/55 patients (75%) finally had a diagnosis [including CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, n = 32) and COL4A1 mutation, n = 7]. In the cavitary group, 13/17 (76%) patients had a diagnosis of EIF2B-related disorder. In the third group (n = 82), a systematic biological screening allowed a diagnosis in 23 patients (28%) and oriented direct genetic screening identified 21 additional diseases (25.6%). Adult-onset genetic leukoencephalopathies are a rare but probably underestimated entity. Our study confirms the use of a magnetic resonance imaging-based classification with a final diagnosis rate of 64% (98/154) cases.


Assuntos
Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Adolescente , Adulto , Idade de Início , Idoso , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Feminino , França , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Substância Branca/patologia , Adulto Jovem
12.
Brain ; 136(Pt 11): 3395-407, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24065723

RESUMO

Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: <40, 40-60, and >60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis revealed that the total calcification scores correlated positively with age in controls and patients, but increased more rapidly with age in patients. The expected total calcification score was greater in SLC20A2 than PDGFRB mutation carriers, beyond the effect of the age alone. No patient with a PDGFRB mutation exhibited a cortical or a vermis calcification. The total calcification score was more severe in symptomatic versus asymptomatic individuals. We provide the first phenotypical description of a case series of patients with idiopathic basal ganglia calcification since the identification of the first causative genes. Clinical and radiological diversity is confirmed, whatever the genetic status. Quantification of calcification is correlated with the symptomatic status, but the location and the severity of the calcifications don't reflect the whole clinical diversity. Other biomarkers may be helpful in better predicting clinical expression.


Assuntos
Doenças dos Gânglios da Base , Calcinose , Doenças Neurodegenerativas , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças dos Gânglios da Base/diagnóstico por imagem , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Calcinose/diagnóstico por imagem , Calcinose/genética , Calcinose/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Fenótipo , Método Simples-Cego , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
13.
EBioMedicine ; 99: 104931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150853

RESUMO

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Criança , Humanos , Ataxia/diagnóstico , Ataxia/genética , Austrália , Canadá , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos Transversais , Ataxia de Friedreich/genética
14.
Alzheimers Res Ther ; 15(1): 93, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170141

RESUMO

BACKGROUND: APP duplication is a rare genetic cause of Alzheimer disease and cerebral amyloid angiopathy (CAA). We aimed to evaluate the phenotypes of APP duplications carriers. METHODS: Clinical, radiological, and neuropathological features of 43 APP duplication carriers from 24 French families were retrospectively analyzed, and MRI features and cerebrospinal fluid (CSF) biomarkers were compared to 40 APP-negative CAA controls. RESULTS: Major neurocognitive disorders were found in 90.2% symptomatic APP duplication carriers, with prominent behavioral impairment in 9.7%. Symptomatic intracerebral hemorrhages were reported in 29.2% and seizures in 51.2%. CSF Aß42 levels were abnormal in 18/19 patients and 14/19 patients fulfilled MRI radiological criteria for CAA, while only 5 displayed no hemorrhagic features. We found no correlation between CAA radiological signs and duplication size. Compared to CAA controls, APP duplication carriers showed less disseminated cortical superficial siderosis (0% vs 37.5%, p = 0.004 adjusted for the delay between symptoms onset and MRI). Deep microbleeds were found in two APP duplication carriers. In addition to neurofibrillary tangles and senile plaques, CAA was diffuse and severe with thickening of leptomeningeal vessels in all 9 autopsies. Lewy bodies were found in substantia nigra, locus coeruleus, and cortical structures of 2/9 patients, and one presented vascular amyloid deposits in basal ganglia. DISCUSSION: Phenotypes associated with APP duplications were heterogeneous with different clinical presentations including dementia, hemorrhage, and seizure and different radiological presentations, even within families. No apparent correlation with duplication size was found. Amyloid burden was severe and widely extended to cerebral vessels as suggested by hemorrhagic features on MRI and neuropathological data, making APP duplication an interesting model of CAA.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Amiloide/genética , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/complicações , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Imageamento por Ressonância Magnética , Fenótipo , Estudos Retrospectivos
15.
Mov Disord ; 26(3): 534-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21287600

RESUMO

BACKGROUND: Responsive ataxia rating scales are essential for determining outcome measures in clinical trials. METHODS: We evaluated the responsiveness over time of the composite cerebellar functional severity score, a quantitative score measuring cerebellar ataxia in 133 patients with autosomal dominant cerebellar ataxias (ADCA), which were prospectively evaluated at inclusion and after one-year of follow-up. A more responsive tool was developed, the Cerebellar Functional Severity score writing, incorporating the writing test at dominant hand to the Cerebellar Functional Severity score. RESULTS: Within the one-year follow-up period, the Cerebellar Functional Severity score and its writing version increased significantly and the Scale for the Assessment and Rating of Ataxia decreased significantly reflecting increased severity of the cerebellar symptoms. The Cerebellar Functional Severity score writing responsiveness was best in genotypes SCA1, 2, and 3 compared with the other genotypes (effect size = 0.196, standardized response mean (SRM) = 0.624 versus effect size = -0.051, SRM = -0.150). The Cerebellar Functional Severity score writing used as an outcome measure would require only 163 SCA1, 2, or 3 patients per group in a two-arm interventional trial for a 50% reduction in progression and 80% of power. DISCUSSION: Our study demonstrates that the Cerebellar Functional Severity score and Cerebellar Functional Severity score writing are responsive quantitative scores for evaluating sensitivity to change in ADCA patients and can be used as outcome measures in clinical trials, especially when targeting genotypes SCA1, 2 and 3.


Assuntos
Cerebelo/fisiopatologia , Índice de Gravidade de Doença , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/fisiopatologia , Adulto , Análise de Variância , Cerebelo/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Amostra , Estatística como Assunto , Adulto Jovem
16.
Am J Med Genet A ; 155A(4): 815-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21412977

RESUMO

Juvenile Huntington disease (JHD) is a rare clinical entity characterized by disease onset before the age of 21. JHD accounts for <10% of Huntington disease patients. Transmission of JHD is paternal in 80-90% of cases. Patients with JHD usually carry more than 60 CAG repeats within the HTT gene. We report here on a 23-month-old boy presenting with global developmental delay first noted at 18 months of age. Clinical examination showed truncal hypotonia, postural and intentional tremor, limb rigidity, and ataxia. Cerebral magnetic resonance imagery (MRI) showed reduced cerebellar volume. Six months later, his 47-year-old father was seen for a 4-year history of progressive dementia with severe behavioral disturbance and chorea. Cerebral MRI showed discrete global and caudate atrophy. DNA analysis revealed a very large and heterogeneous expansion (210-250 CAG) in the child and a 43 CAG expansion of the HTT gene in the father. This unusual case demonstrates that very early onset JHD due to large CAG expansions should be considered in cases of global developmental delay associated with reduced cerebellar volume, including cases without known HD family history.


Assuntos
Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Humanos , Proteína Huntingtina , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Expansão das Repetições de Trinucleotídeos/genética
17.
Diagnostics (Basel) ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573903

RESUMO

3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) Lyase deficiency (HMGLD) (OMIM 246450) is an autosomal recessive genetic disorder caused by homozygous or compound heterozygous variants in the HMGCL gene located on 1p36.11. Clinically, this disorder is characterized by a life-threatening metabolic intoxication with a presentation including severe hypoglycemia without ketosis, metabolic acidosis, hyper-ammoniemia, hepatomegaly and a coma. HMGLD clinical onset is within the first few months of life after a symptomatic free period. In nonacute periods, the treatment is based on a protein- and fat-restricted diet. L-carnitine supplementation is recommended. A late onset presentation has been described in very few cases, and only two adult cases have been reported. The present work aims to describe an incidental discovery of an HMGLD case in a 54-year-old patient and reports a comprehensive review of clinical and biological features in adult patients to raise awareness about the late-onset presentation of this disease.

18.
Br J Psychiatry ; 197(1): 28-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20592430

RESUMO

BACKGROUND: Familial co-occurrence of frontotemporal dementia and schizophrenia has never been investigated. AIMS: To test the hypothesis that frontotemporal dementia and schizophrenia might have a common aetiology in some families in which both syndromes coexist (mixed families). METHOD: The morbid risk for schizophrenia, calculated in first-degree relatives of 100 frontotemporal dementia probands, was compared with that calculated in first-degree relatives of 100 Alzheimer's disease probands. In mixed families, sequencing analysis of known frontotemporal dementia genes and detailed phenotype characterisation of individuals with frontotemporal dementia and schizophrenia were performed. RESULTS: The morbid risk for schizophrenia was significantly higher in relatives of frontotemporal dementia probands (1.35, s.e. = 0.45) than in relatives of Alzheimer's disease probands (0.32, s.e. = 0.22). Ten mixed families were characterised. In three of them a frontotemporal dementia causal mutation was identified that was present in individuals with schizophrenia. Several specific clinical features were noted in people with schizophrenia and frontotemporal dementia in mixed families. CONCLUSIONS: Co-occurrence of schizophrenia and frontotemporal dementia could indicate, in some families, a common aetiology for both conditions.


Assuntos
Demência Frontotemporal/genética , Esquizofrenia/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Demência Frontotemporal/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Linhagem , Medição de Risco/métodos , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Adulto Jovem
19.
Brain ; 132(Pt 6): 1589-600, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19439420

RESUMO

Thirty-four different loci for hereditary spastic paraplegias have been mapped, and 16 responsible genes have been identified. Autosomal recessive forms of spastic paraplegias usually have clinically complex phenotypes but the SPG5, SPG24 and SPG28 loci are considered to be associated with 'pure' forms of the disease. Very recently, five mutations in the CYP7B1 gene, encoding a cytochrome P450 oxysterol 7-alpha hydroxylase and expressed in brain and liver, have been found in SPG5 families. We analysed the coding region and exon-intron boundaries of the CYP7B1 gene by direct sequencing in a series of 82 unrelated autosomal recessive hereditary spastic paraplegia index patients, manifesting either a pure (n = 52) or a complex form (n = 30) of the disease, and in 90 unrelated index patients with sporadic pure hereditary spastic paraplegia. We identified eight, including six novel, mutations in CYP7B1 segregating in nine families. Three of these mutations were nonsense (p.R63X, p.R112X, p.Y275X) and five were missense mutations (p.T297A, p.R417H, p.R417C, p.F470I, p.R486C), the last four clustering in exon 6 at the C-terminal end of the protein. Residue R417 appeared as a mutational hot-spot. The mean age at onset in 16 patients was 16.4 +/- 12.1 years (range 4-47 years). After a mean disease duration of 28.3 +/- 13.4 years (10-58), spasticity and functional handicap were moderate to severe in all cases. Interestingly, hereditary spastic paraplegia was pure in seven SPG5 families but complex in two. In addition, white matter hyperintensities were observed on brain magnetic resonance imaging in three patients issued from two of the seven pure families. Lastly, the index case of one family had a chronic autoimmune hepatitis while his eldest brother died from cirrhosis and liver failure. Whether this association is fortuitous remains unsolved, however. The frequency of CYP7B1 mutations were 7.3% (n = 6/82) in our series of autosomal recessive hereditary spastic paraplegia families and 3.3% (n = 3/90) in our series of sporadic pure spastic paraplegia. The recent identification of CYP7B1 as the gene responsible for SPG5 highlights a novel molecular mechanism involved in hereditary spastic paraplegia determinism.


Assuntos
Códon sem Sentido/genética , Mutação de Sentido Incorreto/genética , Paraplegia Espástica Hereditária/genética , Esteroide Hidroxilases/genética , Adolescente , Adulto , Idoso , Animais , Sequência de Bases , Encéfalo/patologia , Família 7 do Citocromo P450 , Feminino , Genes Recessivos , Variação Genética , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual , Paraplegia Espástica Hereditária/patologia , Especificidade da Espécie , Adulto Jovem
20.
Eur J Med Genet ; 63(12): 104063, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32947049

RESUMO

OBJECTIVE: To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy. METHODS: Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy. RESULTS: We identified a novel heterozygous variant, c.1826T > C; p.Ile609Thr, in the DYNC1H1 gene localized within the common haplotype in the 14q32.3 chromosomal region which cosegregated with disease in this large family. Within the family, affected individuals were found to have a wide array of clinical variability. Although some individuals presented the typical lower motor neuron phenotype with areflexia and denervation, others presented with muscle weakness and atrophy, hyperreflexia, and absence of denervation suggesting a predominant upper motor neuron disease. In addition, some affected individuals presented with an intermediate phenotype characterized by hyperreflexia and denervation, expressing a combination of lower and upper motor neuron defects. CONCLUSION: Our study demonstrates the wide clinical variability associated with a single disease causing variant in DYNC1H1 gene and this variant demonstrated a high penetrance within this large family.


Assuntos
Dineínas do Citoplasma/genética , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Extremidade Inferior/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/patologia , Linhagem , Fenótipo , Reflexo , Extremidade Superior/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA