RESUMO
Non-coplanar radiotherapy treatment techniques on C-arm linear accelerators have the potential to reduce dose to organs-at-risk in comparison with coplanar treatment techniques. Accurately predicting possible collisions between gantry, table and patient during treatment planning is needed to ensure patient safety. We offer a freely available collision prediction tool using Blender, a free and open-source 3D computer graphics software toolset. A geometric model of a C-arm linear accelerator including a library of patient models is created inside Blender. Based on the model, collision predictions can be used both to calculate collision-free zones and to check treatment plans for collisions. The tool is validated for two setups, once with and once without a full body phantom with the same table position. For this, each gantry-table angle combination with a 2° resolution is manually checked for collision interlocks at a TrueBeam system and compared to simulated collision predictions. For the collision check of a treatment plan, the tool outputs the minimal distance between the gantry, table and patient model and a video of the movement of the gantry and table, which is demonstrated for one use case. A graphical user interface allows user-friendly input of the table and patient specification for the collision prediction tool. The validation resulted in a true positive rate of 100%, which is the rate between the number of correctly predicted collision gantry-table combinations and the number of all measured collision gantry-table combinations, and a true negative rate of 89%, which is the ratio between the number of correctly predicted collision-free combinations and the number of all measured collision-free combinations. A collision prediction tool is successfully created and able to produce maps of collision-free zones and to test treatment plans for collisions including visualisation of the gantry and table movement.
Assuntos
Comportamento de Utilização de Ferramentas , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem RadioterapêuticaRESUMO
Objective.Non-isocentric dynamic trajectory radiotherapy (DTRT) involves dynamic table translations in synchrony with intensity modulation and dynamic gantry, table, and/or collimator rotation. This work aims to develop and evaluate a novel dosimetrically motivated path determination technique for non-isocentric DTRT.Approach.The path determination considers all available beam directions, given on a user-specified grid of gantry angle, table angle, and longitudinal, vertical, and lateral table position. Additionally, the source-to-target distance of all beam directions can be extended by moving the table away from the gantry along the central beam axis to increase the collision-free space. The path determination uses a column generation algorithm to iteratively add beam directions to paths until a user-defined total path length is reached. A subsequent direct aperture optimization of the intensity modulation along the paths creates deliverable plans. Non-isocentric DTRT plans using the path determination and using a manual path setup were created for a craniospinal and a spinal irradiation case. Furthermore, VMAT, isocentric DTRT, and non-isocentric DTRT plans are created for a breast, head and neck (H&N), and esophagus case. Additionally, a HyperArc plan is created for the H&N case. The plans are compared in terms of the dosimetric treatment plan quality and estimated delivery time.Main results.For the craniospinal and spinal irradiation case, using path determination results in dose distributions with improved conformity but a slightly worse target homogeneity compared to manual path setup. The non-isocentric DTRT plans maintained target coverage while reducing the mean dose to organs-at-risk on average by 1.7 Gy (breast), 1.0 Gy (H&N), and 1.6 Gy (esophagus) compared to the VMAT plans and by 0.8 Gy (breast), 0.6 Gy (H&N), and 0.8 Gy (esophagus) compared to the isocentric DTRT plans.Significance.A general dosimetrically motivated path determination applicable to non-isocentric DTRT plans is successfully developed, further advancing the treatment planning for non-isocentric DTRT.
Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Mama/radioterapia , Algoritmos , FemininoRESUMO
Objective.Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Approach.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam's-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Main results.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Significance.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Radiometria/métodos , Elétrons/uso terapêuticoRESUMO
We compared dynamic trajectory radiotherapy (DTRT) to state-of-the-art volumetric modulated arc therapy (VMAT) for 46 head and neck cancer cases. DTRT had lower dose to salivary glands and swallowing structure, resulting in lower predicted xerostomia and dysphagia compared to VMAT. DTRT is deliverable on C-arm linacs with high dosimetric accuracy.
Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Masculino , Planejamento da Radioterapia Assistida por Computador/métodos , Feminino , Pessoa de Meia-Idade , Transtornos de Deglutição/etiologia , Idoso , Xerostomia/etiologiaRESUMO
BACKGROUND: Non-coplanarity and mixed beam modality could be combined to further enhance dosimetric treatment plan quality. We introduce dynamic mixed beam arc therapy (DYMBARC) as an innovative technique that combines non-coplanar photon and electron arcs, dynamic gantry and collimator rotations, and intensity modulation with photon multileaf collimator (MLC). However, finding favorable beam directions for DYMBARC is challenging due to the large solution space, machine component constraints, and optimization parameters, posing a highly non-convex optimization problem. PURPOSE: To establish DYMBARC and solve the pathfinding challenge by employing direct aperture optimization (DAO) to determine the table angles and gantry angle ranges of photon and electron arcs for different clinically motivated cases. METHODS: The method starts by generating a grid of beam directions based on user-defined resolutions along the gantry and table angle axes for each beam quality considered. Beam directions causing collisions or entering through the end of CT are excluded. For electrons, a fixed source-to-surface distance of 80 cm is used to reduce in-air scatter. Electron beam energies with insufficient range to reach the target or beam directions impinging on the table before reaching the patient are excluded. The remaining beam directions form the pathfinding solution space. Promising photon and electron MLC-defined apertures, with associated monitor unit (MU) weights, are iteratively added using a hybrid-DAO algorithm. This algorithm combines column generation to add apertures and simulated annealing to further refine aperture shapes and weights. Apertures are added until the requested number of paths are formed and the user-defined maximum total gantry angle range is reached. Paths are resampled to a finer gantry angle resolution and subject to DAO for simultaneous optimization of beam intensities along the photon/electron arcs. Subsequent final dose calculation and MU weight reoptimization result in a deliverable DYMBARC plan. DYMBARC plans are created for three clinically motivated cases (brain, breast, and pelvis) and compared to DYMBARC variants: colli-DTRT (dynamic collimator trajectory radiotherapy) using non-coplanar photon arcs; and Arc-MBRT (mixed beam radiotherapy) using photons and electrons but restricted to coplanar setup. Additionally, a manually defined volumetric modulated arc therapy (VMAT) setup serves as a reference clinical technique. Dose distributions, dose-volume histograms, and dosimetric endpoints are evaluated. Dosimetric validation with radiochromic film measurements (gamma evaluation, 3% / 2 mm (global), 10% dose threshold) is performed on a TrueBeam system in developer mode for one case. RESULTS: While maintaining similar target coverage and homogeneity, DYMBARC reduced mean doses to organs-at-risk compared to VMAT by an average of 3.2, 0.5, and 2.9 Gy for the brain, breast, and pelvis cases, respectively. Similar or smaller mean dose reductions were observed for Arc-MBRT or colli-DTRT, compared to VMAT. Electron contributions to the mean planning target volume dose ranged from 2% to 34% for DYMBARC and from 11% to 40% for Arc-MBRT. Measurement validation showed >99.7% gamma passing rate. CONCLUSIONS: DYMBARC was successfully established using a dosimetrically optimized pathfinding approach, combining non-coplanarity with mixed beam modality. DYMBARC facilitated the determination of photon and electron contributions on a case-by-case basis, enhancing more personalized treatment modalities.
RESUMO
Background and purpose: Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties. Materials and methods: The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed. For this purpose, dose distributions were recalculated using Monte Carlo, including uncertainties in PS (translation and rotation) and machine-positioning (gantry-, table-, collimator-rotation and multi-leaf collimator (MLC)). Plan robustness was evaluated by the uncertainties' impact on normal tissue complication probabilities (NTCP) for xerostomia and dysphagia and on dose-volume endpoints. Differences between DTRT and VMAT plan robustness were compared using Wilcoxon matched-pair signed-rank test (α = 5 %). Results: Average NTCP for moderate-to-severe xerostomia and grade ≥ II dysphagia was lower for DTRT than VMAT in the nominal scenario (0.5 %, p = 0.01; 2.1 %, p < 0.01) and for all investigated uncertainties, except MLC positioning, where the difference was not significant. Average differences compared to the nominal scenario were ≤ 3.5 Gy for rotational PS (≤ 3°) and machine-positioning (≤ 2°) uncertainties, <7 Gy for translational PS uncertainties (≤ 5 mm) and < 20 Gy for MLC-positioning uncertainties (≤ 5 mm). Conclusions: DTRT and VMAT plan robustness to the investigated uncertainties depended on uncertainty direction and location of the structure-of-interest to the target. NTCP remained on average lower for DTRT than VMAT even when considering uncertainties.
RESUMO
BACKGROUND: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation. PURPOSE: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination. METHODS: BAO considers all available beam directions sampled on a gantry-table map with the collimator angle aligned to the superior-inferior axis (colli-DTRT) or static (NC-VMAT). First, FMO is performed, and beam directions are scored based on their contributions to the objective function. The map is thresholded to remove the least contributing beam directions, and arc candidates are formed by adjacent beam directions with the same table angle. Next, FMO and arc candidate trimming, based on objective function penalty score, is performed iteratively until a desired total gantry angle range is reached. Direct aperture optimization on the final set of colli-DTRT or NC-VMAT arcs generates deliverable plans. colli-DTRT and NC-VMAT plans were created for seven clinically-motivated cases with targets in the head and neck (two cases), brain, esophagus, lung, breast, and prostate. colli-DTRT and NC-VMAT were compared to coplanar VMAT plans as well as to class-solution non-coplanar VMAT plans for the brain and head and neck cases. Dosimetric validation was performed for one colli-DTRT (head and neck) and one NC-VMAT (breast) plan using film measurements. RESULTS: Target coverage and conformity was similar for all techniques. colli-DTRT and NC-VMAT plans had improved dosimetric performance compared to coplanar VMAT for all treatment sites except prostate where all techniques were equivalent. For the head and neck and brain cases, mean dose reduction-in percentage of the prescription dose-to parallel organs was on average 0.7% (colli-DTRT), 0.8% (NC-VMAT) and 0.4% (class-solution) compared to VMAT. The reduction in D2% for the serial organs was on average 1.7% (colli-DTRT), 2.0% (NC-VMAT) and 0.9% (class-solution). For the esophagus, lung, and breast cases, mean dose reduction to parallel organs was on average 0.2% (colli-DTRT) and 0.3% (NC-VMAT) compared to VMAT. The reduction in D2% for the serial organs was on average 1.3% (colli-DTRT) and 0.9% (NC-VMAT). Estimated delivery times for colli-DTRT and NC-VMAT were below 4 min for a full gantry angle range of 720°, including transitions between arcs, except for the brain case where multiple arcs covered the whole table angle range. These times are in the same order as the class-solution for the head and neck and brain cases. Total optimization times were 25%-107% longer for colli-DTRT, including BAO, compared to VMAT. CONCLUSIONS: We successfully developed dosimetrically motivated BAO for colli-DTRT and NC-VMAT treatment planning. colli-DTRT and NC-VMAT are applicable to multiple treatment sites, including body sites, with beneficial or equivalent dosimetric performances compared to coplanar VMAT and reasonable delivery times.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Masculino , Encéfalo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Rotação , FemininoRESUMO
Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Elétrons , Radioterapia de Intensidade Modulada/métodos , Fótons/uso terapêuticoRESUMO
BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes. PURPOSE: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery. METHODS: A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold). RESULTS: The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%. CONCLUSION: Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT.
Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Estudos de Viabilidade , Radiometria , Pulmão , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador , Dosagem RadioterapêuticaRESUMO
BACKGROUND: Evaluating plan robustness is a key step in radiotherapy. PURPOSE: To develop a flexible Monte Carlo (MC)-based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity-modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components. METHODS: The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user-defined uncertainty scenarios to populate a robustness space. An uncertainty scenario is defined by a certain combination of uncertainties in patient setup, rigid intrafraction motion and in mechanical steering of the following machine components: angles of gantry, collimator, table-yaw, table-pitch, table-roll, translational positions of jaws, multileaf-collimator (MLC) banks, and single MLC leaves. The Swiss Monte Carlo Plan (SMCP) is integrated in this tool to serve as the backbone for the MC dose calculations incorporating the uncertainties. The calculated dose distributions serve as input for the second part of the tool, handling the quantitative evaluation of the dosimetric impact of the uncertainties. A graphical user interface (GUI) is developed to simultaneously evaluate the uncertainty scenarios according to user-specified conditions based on dose-volume histogram (DVH) parameters, fast and exact gamma analysis, and dose differences. Additionally, a robustness index (RI) is introduced with the aim to simultaneously evaluate and condense dosimetric robustness against multiple uncertainties into one number. The RI is defined as the ratio of scenarios passing the conditions on the dose distributions. Weighting of the scenarios in the robustness space is possible to consider their likelihood of occurrence. The robustness tool is applied on IMRT, a volumetric modulated arc therapy (VMAT), a dynamic trajectory radiotherapy (DTRT), and a dynamic mixed beam radiotherapy (DYMBER) plan for a brain case to evaluate the robustness to uncertainties of gantry-, table-, collimator angle, MLC, and intrafraction motion. Additionally, the robustness of the IMRT, VMAT, and DTRT plan against patient setup uncertainties are compared. The robustness tool is validated by Delta4 measurements for scenarios including all uncertainty types available. RESULTS: The robustness tool performs simultaneous calculation of uncertainty scenarios, and the GUI enables their fast evaluation. For all evaluated plans and uncertainties, the planning target volume (PTV) margin prevented major clinical target volume (CTV) coverage deterioration (maximum observed standard deviation of D 98 % CTV $D98{\% _{{\rm{CTV}}}}$ was 1.3 Gy). OARs close to the PTV experienced larger dosimetric deviations (maximum observed standard deviation of D 2 % chiasma $D2{\% _{{\rm{chiasma}}}}$ was 14.5 Gy). Robustness comparison by RI evaluation against patient setup uncertainties revealed better dosimetric robustness of the VMAT and DTRT plans as compared to the IMRT plan. Delta4 validation measurements agreed with calculations by >96% gamma-passing rate (3% global/2 mm). CONCLUSIONS: The robustness tool was successfully implemented. Calculation and evaluation of uncertainty scenarios with the robustness tool were demonstrated on a brain case. Effects of patient and machine-specific uncertainties and the combination thereof on the dose distribution are evaluated in a user-friendly GUI to quantitatively assess and compare treatment plans and their robustness.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , IncertezaRESUMO
BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends volumetric modulated arc therapy (VMAT) with dynamic table and collimator rotation during beam-on. The aim of the study is to establish DTRT path-finding strategies, demonstrate deliverability and dosimetric accuracy and compare DTRT to state-of-the-art VMAT for common head and neck (HN) cancer cases. METHODS: A publicly available library of seven HN cases was created on an anthropomorphic phantom with all relevant organs-at-risk (OARs) delineated. DTRT plans were generated with beam incidences minimizing fractional target/OAR volume overlap and compared to VMAT. Deliverability and dosimetric validation was carried out on the phantom. RESULTS: DTRT and VMAT had similar target coverage. For three locoregionally advanced oropharyngeal carcinomas and one adenoid cystic carcinoma, mean dose to the contralateral salivary glands, pharynx and oral cavity was reduced by 2.5, 1.7 and 3.1 Gy respectively on average with DTRT compared to VMAT. For a locally recurrent nasopharyngeal carcinoma, D0.03 cc to the ipsilateral optic nerve was above tolerance (54.0 Gy) for VMAT (54.8 Gy) but within tolerance for DTRT (53.3 Gy). For a laryngeal carcinoma, DTRT resulted in higher dose than VMAT to the pharynx and brachial plexus but lower dose to the upper oesophagus, thyroid gland and contralateral carotid artery. For a single vocal cord irradiation case, DTRT spared most OARs better than VMAT. All plans were delivered successfully on the phantom and dosimetric validation resulted in gamma passing rates of 93.9% and 95.8% (2%/2 mm criteria, 10% dose threshold). CONCLUSIONS: This study provides a proof of principle of DTRT for common HN cases with plans that were deliverable on a C-arm linac with high accuracy. The comparison with VMAT indicates substantial OAR sparing could be achieved.
Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Recidiva Local de Neoplasia , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodosRESUMO
BACKGROUND AND PURPOSE: To assess the feasibility of postoperative stereotactic body radiation therapy (SBRT) for patients with hybrid implants consisting of carbon fiber reinforced polyetheretherketone and titanium (CFP-T) using CyberKnife. MATERIALS AND METHODS: All essential steps within a radiation therapy (RT) workflow were evaluated. First, the contouring process of target volumes and organs at risk (OAR) was done for patients with CFP-T implants. Second, after RT-planning, the accuracy of the calculated dose distributions was tested in a slab phantom and an anthropomorphic phantom using film dosimetry. As a third step, the accuracy of the mandatory image guided radiation therapy (IGRT) including automatic matching was assessed using the anthropomorphic phantom. For this goal, a standard quality assurance (QA) test was modified to carry out its IGRT part in presence of CFP-T implants. RESULTS: Using CFP-T implants, target volumes could precisely delineated. There was no need for compromising the contours to overcome artifact obstacles. Differences between measured and calculated dose values were below 11% for the slab phantom, and at least 95% of the voxels were within 5% dose difference. The comparisons for the anthropomorphic phantom showed a gamma-passing rate (5%, 1 mm) of at least 97%. Additionally the test results with and without CFP-T implants were comparable. No issues concerning the IGRT were detected. The modified machine QA test resulted in a targeting error of 0.71 mm, which corresponds to the results of the unmodified standard tests. CONCLUSION: Dose calculation and delivery of postoperative spine SBRT is feasible in proximity of CFP-T implants using a CyberKnife system.
Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Carbono , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , TitânioRESUMO
PURPOSE: The objectives of the work presented in this paper were to (1) implement a robust-optimization method for deliverable mixed-beam radiotherapy (MBRT) plans within a previously developed MBRT planning framework; (2) perform an experimental validation of the delivery of robust-optimized MBRT plans; and (3) compare PTV-based and robust-optimized MBRT plans in terms of target dose robustness and organs at risk (OAR) sparing for clinical head and neck and brain patient cases. METHODS: A robust-optimization method, which accounts for translational setup errors, was implemented within a previously developed treatment planning framework for MBRT. The framework uses a hybrid direct aperture optimization method combining column generation and simulated annealing. A robust plan was developed and then delivered to an anthropomorphic head phantom using the Developer Mode of a TrueBeam linac. Planar dose distributions were measured and compared to the planned dose. Robust-optimized and PTV-based plans were developed for three clinical patient cases consisting of two head and neck cases and one brain case. The plans were compared in terms of the robustness to 5 mm shifts of the target volume dose as well as in terms of OAR sparing. RESULTS: Using a gamma criterion of 3%/2 mm and a dose threshold of 10%, the agreement between film measurements and dose calculations was better than 97.7% for the total plan and better than 95.5% for the electron component of the plan. For the two head and neck patient cases, the average clinical target volume (CTV) dose homogeneity index (V95%-V107%) over all the considered setup error scenarios was on average 19% lower for the PTV-based plans and it had a larger standard deviation. The robust-optimized plans achieved, on average, a 20% reduction in the OAR doses compared to the PTV-based plans. For the brain patient case, the CTV dose homogeneity index was similar for the two plans, while the OAR doses were 22% lower, on average, for the robust-optimized plan. No clear trend in terms of electron contributions was found across the three patient cases, although robust-optimized plans tended toward higher electron beam energies. CONCLUSIONS: A framework for robust optimization of deliverable MBRT plans has been developed and validated. PTV-based MBRT were found to not be robust to setup errors, while the dose delivered by the robust-optimized plans were clinically acceptable for all considered error scenarios and had better OAR sparing. This study shows that the robust optimization is a promising alternative to conventional PTV margins for MBRT.