RESUMO
In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.
Assuntos
Parabenos , Poluentes Químicos da Água , Parabenos/química , Adsorção , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Catálise , CinéticaRESUMO
The study was conducted in Cerritos, San Luis Potosí, México, near the Guaxcama mine, focused on environmental contamination (groundwater and agricultural soil) from antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). In March 2022, 20 agricultural soil and 16 groundwater samples were collected near the historically cinnabar (HgS)- and arsenopyrite (FeAsS)-rich Guaxcama mine. Hydride generation atomic fluorescence spectrometry (HG-AFS) for As, cold vapor atomic fluorescence spectrometry (CV-AFS) for Hg, and inductively coupled plasma optical emission spectrometry (ICP-OES) for Cd, Pb, and Sb were used for the determinations of potentially toxic elements (PTEs). While concentrations of Cd, Hg, Pb, and Sb in groundwater were below detection limits, As levels exhibited a range from 40.9 ± 1.4 to 576.0 ± 1.0 µg/L, exceeding permissible limits for drinking water (10 µg/L). In agricultural soil, As was between 7.67 ± 0.16 and 24.1 ± 0.4 µg/g, Hg ranged from 0.203 ± 0.018 to 2.33 ± 0.19 µg/g, Cd from 2.53 ± 0.90 to 2.78 ± 0.01 µg/g, and Pb from 11.7 ± 1.2 to 34.3 ± 4.1 µg/g. Only one study area surpassed the Mexican As soil limit of 22 µg/g. Sequential extraction (four-step BCR procedure) indicated significant As bioavailability in soil (fractions 1 and 2) ranging from 3.66 to 10.36%, heightening the risk of crop transfer, in contrast to the low bioavailability of Hg, showing that fractions 1, 2, and 3 were below the limit of quantification (LOQ). Crucial physicochemical parameters in soil, including nitrate levels, pH, and organic matter, were pivotal in understanding contamination dynamics. Principal component analysis highlighted the influence of elements like Fe and Ca on phytoavailable As, while Pb and Cd likely originated from a common source. Ecological risk assessments underscored the significant impact of pollution, primarily due to the concentrations of Cd and Hg. Non-cancer and cancer risks to residents through As poisoning via contaminated water ingestion also were found. The hazard index (HI) values varied between 4.0 and 82.2 for adults and children. The total incremental lifetime cancer risk (TILCAR) values for adults ranged from 7.75E - 04 to 1.06E - 02, whereas for children, the values were from 2.47E - 04 to 3.17E - 03.
Assuntos
Agricultura , Antimônio , Arsênio , Monitoramento Ambiental , Água Subterrânea , Mineração , Poluentes do Solo , Poluentes Químicos da Água , México , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Arsênio/análise , Antimônio/análise , Mercúrio/análise , Cádmio/análise , Solo/química , Chumbo/análise , Metais Pesados/análiseRESUMO
In this work a comparative study of the catalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) 0.5 wt% materials was carried out in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) as a commercial formulation Hierbamina®, using a compound parabolic collector (CPC) reactor. The catalysts were synthesized by the sol-gel method and characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The textural properties of solids were determined from N2 adsorption isotherms using the Brunauer-Emmett-Teller (BET) method. The incorporation of Fe(0) onto ZnO was demonstrated by X-ray photoelectron spectroscopy analysis. The photocatalytic tests were performed at pH 7, using 10 mg L(-1) of herbicide and 0.5 g L(-1) of catalyst loading. The decay in herbicide concentration was followed by reversed-phase chromatography. A complete degradation of 2,4-D was achieved using ZnO-Fe(0) while 47% of herbicide removal was attained with ZnO-Fe2O3 mixed oxide for an accumulated energy QUV ≈ 2 kJ L(-1). The removal percentage of total organic carbon (TOC) during the solar photocatalytic process was superior using ZnO-Fe(0), achieving 45% compared to the 15% obtained with the mixed oxide catalyst.
RESUMO
In this work, nitrogen-doped ZnO material was synthesized by the sol-gel method using zinc acetate as the precursor and urea as the nitrogen source (15, 20, 25 and 30% wt.). For comparative purposes, bare ZnO was also prepared. The influence of N doping on structural, morphological, optical and photocatalytic properties was investigated. The synthesized catalysts were characterized by XRD, SEM-EDS, diffuse reflectance UV-Vis spectroscopy, BET and XPS analysis. The photocatalytic activity of N-doped ZnO catalysts was evaluated during the degradation of a mixture of herbicides (2,4-D and picloram) under visible radiation ≥400 nm. The photo-absorption wavelength range of the N-doped ZnO samples was shifted to longer wavelength compared to those of the unmodified ZnO. Among different amounts of dopant agent, the 30% N-doped ZnO material showed higher visible-light activity compared with pure ZnO. Several degradation by-products were identified by using HPLC and ESI-MS/MS. The enhancement of visible photocatalytic activity of the N-doped ZnO semiconductor could be mainly due to their capability in reducing the electron-hole pair recombination.
Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Nitrogênio/química , Processos Fotoquímicos , Picloram/química , Óxido de Zinco/química , Óxido de Zinco/síntese química , Catálise , Técnicas de Química SintéticaRESUMO
The electro-Fenton process (EFP) is a powerful advanced oxidation process beneficial to treating recalcitrant contaminants, and there has been a continuing interest in combining this technology to enhance the efficiency of conventional wastewater treatment processes. In this work, an optimized EFP process is performed as pretreatment for the degradation and mineralization of three blank fluoroquinolones (FQs) drugs: ofloxacin (OFL), norfloxacin (NOR), and ciprofloxacin (CIP). The optimization of the experiment was carried out using a Box-Behnken experimental design. Faster and complete degradation of the drugs mixture was achieved in 90 min with 61.12 ± 2.0% of mineralization in 180 min, under the optimized conditions: j = 244.0 mA cm-2, [Fe2+] = 0.31 mM, and [FQs] = 87.0 mg L-1. Furthermore, a low toxicity effluent was obtained in 90 min of the experiment, according to bioassay toxicity with Vibrio fischeri. Five short-chain carboxylic acids, including oxalic, maleic, oxamic, formic, and fumaric acids, were detected and quantified, in addition to F- and NO3- inorganic ions. The inhibition of the reactive oxygen species with scavenger proof was also evaluated in this paper.
Assuntos
Ofloxacino , Poluentes Químicos da Água , Ofloxacino/toxicidade , Ciprofloxacina/toxicidade , Norfloxacino/farmacologia , Fluoroquinolonas/toxicidade , Ácidos Carboxílicos , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/toxicidade , EletrodosRESUMO
Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. Contamination of water and soils by HMs and Ms from natural or anthropogenic sources is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of reactive oxygen species (ROS) such as (O2â¢-), (â¢OH), (H2O2), and (1O2), and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms. This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on their possible effects on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. The factors that affect the uptake of HMs and Ms by bean plants, and the defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb are also discussed. Furthermore, future research on mitigating HMs and Ms toxicity in Phaseolus vulgaris L. plants is highlighted.
Assuntos
Arsênio , Mercúrio , Metaloides , Metais Pesados , Phaseolus , Poluentes do Solo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/farmacologia , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Chumbo/farmacologia , Poluentes do Solo/análise , Metais Pesados/análise , Arsênio/análise , Mercúrio/toxicidade , Plantas , Solo/químicaRESUMO
Simultaneous determination of three herbicides (dicamba, 2,4-D, and atrazine) has been achieved by on-line solid-phase extraction (SPE) coupled to multisyringe chromatography (MSC) with UV detection. The preconcentration conditions were optimized; a preconcentration flow rate of 0.5 mL min(-1) and elution at 0.8 mL min(-1) were the optimum conditions. A C(18) (8 mm i.d.) membrane extraction disk conditioned with 0.3 mol L(-1) HCl in 0.5% MeOH was used. A 3-mL sample was preconcentrated, then eluted with 0.43 mL 40:60 water-MeOH. A C(18) monolithic column (25 mm × 4.6 mm) was used for chromatographic separation. Separation of the three compounds was achieved in 10 min by use of 0.01% aqueous acetic acid-MeOH (60:40) as mobile phase at a flow rate of 0.8 mL min(-1). The limits of detection (LOD) were 13, 57, and 22 µg L(-1) for dicamba, 2,4-D, and atrazine, respectively. The sampling frequency was three analyses per hour, and each analysis consumed only 7.3 mL solvent. The method was applied to spiked water samples, and recovery between 85 and 112% was obtained. Recovery was significantly better than in the conventional HPLC-UV method. These results indicated the reliability and accuracy of this flow-based method. This is the first time this family of herbicides has been simultaneously analyzed by on-line SPE-MSC using a monolithic column.
Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Atrazina/isolamento & purificação , Dicamba/isolamento & purificação , Herbicidas/isolamento & purificação , Extração em Fase Sólida/instrumentação , Poluentes Químicos da Água/isolamento & purificação , Ácido 2,4-Diclorofenoxiacético/análise , Atrazina/análise , Cromatografia Líquida de Alta Pressão/instrumentação , Dicamba/análise , Água Potável/análise , Desenho de Equipamento , Herbicidas/análise , Limite de Detecção , Poluentes Químicos da Água/análiseRESUMO
The photocatalytic reduction of Cr(VI) from agricultural soil leachates irrigated with Cr(VI)-containing waste hydroponic solution was evaluated in this work. For this purpose, zinc oxide was used as a catalyst under UV irradiation (lambda = 365 nm). The reduction of Cr(VI) was preliminarily evaluated on synthetic solutions with a concentration of 15 mg L(-1) to optimize the catalyst loading and the solution pH and to determine the effect of organic matter. Greater removal of Cr(VI) was observed at pH 7, and the optimum catalyst loading was found to be 2 g L(-1), which achieved an 84% Cr(VI) reduction in 6 h. The influence of dissolved organic matter on the reduction of Cr(VI) was evaluated through the addition of different concentrations of humic acid (HA) to the chromium solution. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased from 0 to 14 mg L(-1). The percentage of hexavalent chromium reduction from soil leachates was in the range of 13-99%, and the rate constant was significantly enhanced by the presence of organic compounds in the soil pore water. Thus, a marked synergistic effect between the photocatalytic reduction of Cr(VI) and the organic matter in soil (e.g. humic substances) was observed in real samples and was similar to that observed in the Cr(VI) synthetic solution that contained HA.
Assuntos
Agricultura , Cromo/química , Poluentes do Solo/química , Raios Ultravioleta , Óxido de Zinco/química , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Processos Fotoquímicos , Águas ResiduáriasRESUMO
In this study, the photocatalytic removal of an emerging contaminant, diclofenac (DCF) sodium, was performed using the nitrogen-doped WO3/TiO2-coupled oxide catalyst (WO3/TiO2-N). The catalyst synthesis was accomplished by a sol-gel method using tetrabutyl orthotitanate (C16H36O4Ti), ammonium p-tungstate [(NH4)10H2W12O42·4H2O] and ammonium nitrate (NH4NO3) as the nitrogen source. For comparison, TiO2 and WO3/TiO2 were also prepared under similar conditions. Analysis by X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the synthesized materials. The photocatalytic efficiency of the semiconductors was determined in a batch reactor irradiated with simulated solar light. Residual and mineralized DCF were quantified by high-performance liquid chromatography, total organic carbon analysis and ion exchange chromatography. The results indicated that the tungsten atoms were dispersed on the surface of TiO2 as WO3. The partial substitution of oxygen by nitrogen atoms into the lattice of TiO2 was an important factor to improve the photocatalytic efficiency of WO3/TiO2. Therefore, the best photocatalytic activity was obtained with the WO3/TiO2-N0.18 catalyst, reaching 100% DCF transformation at 250 kJ m-2 and complete mineralization at 400 kJ m-2 of solar-accumulated energy.
Assuntos
Diclofenaco/química , Nitrogênio/química , Titânio/química , Adsorção , Catálise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Tungstênio , Difração de Raios XRESUMO
Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.
Assuntos
Micro-Ondas , Titânio/química , Catálise , CresóisRESUMO
The development of a new method to determine the presence of the organoarsenic additives p-arsanilic acid (ASA), roxarsone (ROX) and nitarsone (NIT) in livestock feeds by high performance liquid chromatography coupled to ultraviolet oxidation hydride generation atomic fluorescence spectrometry (HPLC-UV/HG-AFS) after microwave assisted extraction (MAE) was proposed. Chromatographic separation was achieved on a C18 column with 2% acetic acid/methanol (96:4, v/v) as the mobile phase. The limits of detection (LODs) were 0.13, 0.09 and 0.08mgL-1, and the limits of quantification (LOQs) were 0.44, 0.30 and 0.28mgL-1. The relative standard deviations (RSDs) for ASA, ROX and NIT determined from five measurements of the mixed calibration standard were 3.3, 5.3, and 5.4%, respectively. MAE extraction of phenylated arsenic compounds using 1.5M H3PO4 at 120°C for 45min allowed for maximum recoveries (%) of total arsenic (As) and organoarsenic species, with no degradation of these compounds. The extraction of total As was approximately 97%, and the As species recoveries were between 95.2 and 97.0%. The results of the analysis were validated using mass balance by comparing the sum of extracted As with the total concentration of As in the corresponding samples. The method was successfully applied to determine the presence of these compounds in feed samples. ASA was the only As species detected in chicken feed samples, with a concentration between 0.72 and 12.91mgkg-1.
Assuntos
Ração Animal , Gado , Animais , Arsênio , Cromatografia Líquida de Alta Pressão , Análise de Alimentos , Micro-Ondas , Espectrometria de FluorescênciaRESUMO
The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30µg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5µg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples.
Assuntos
Antimônio/análise , Água Potável/química , Contaminação de Alimentos/análise , Polietilenotereftalatos/química , Poluentes Químicos da Água/análise , Antimônio/química , Embalagem de Alimentos , Temperatura , Poluentes Químicos da Água/química , Qualidade da ÁguaRESUMO
In this study, a multisyringe chromatography system (MSC) using a C18 monolithic column was proposed for the on-line monitoring of the photocatalytic degradation of isoniazid (INH, 10 mg L(-1)) and pyrazinamide (PYRA, 5mgL(-1)) mixtures in aqueous solution using a small sample volume (200 µL) with an on-line filtration device in a fully automated approach. During the photocatalytic oxidation using TiO2 or ZnO semiconductor materials, total organic carbon (TOC) and the formed intermediates were analyzed off-line using ion chromatography, ion exclusion HPLC, and ESI-MS/MS. The results showed that TiO2 exhibits a better photocatalytic activity than ZnO under UV irradiation (365 nm) for the degradation of INH and PYRA mixtures, generating 97% and 92% degradation, respectively. The optimal oxidation conditions were identified as pH 7 and 1.0 g L(-1) of TiO2 as catalyst. The mineralization of the initial organic compounds was confirmed by the regular decrease in TOC, which indicated 63% mineralization, and the quantitative release of nitrate and nitrite ions, which represent 33% of the nitrogen in these compounds. The major intermediates of INH degradation included isonicotinamide, isonicotinic acid, and pyridine, while the ESI-MS/MS analysis of PYRA aqueous solution after photocatalytic treatment showed the formation of pyrazin-2-ylmethanol, pyrazin-2-ol, and pyrazine. Three low-molecular weight compounds, acetamide, acetic acid and formic acid, were detected during INH and PYRA decomposition. PYRA was more resistant to photocatalytic degradation due to the presence of the pyrazine ring, which provides greater stability against OH attack.
Assuntos
Antituberculosos/isolamento & purificação , Monitoramento Ambiental/métodos , Isoniazida/isolamento & purificação , Pirazinamida/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Antituberculosos/análise , Antituberculosos/efeitos da radiação , Catálise , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Isoniazida/análise , Isoniazida/efeitos da radiação , Oxirredução , Processos Fotoquímicos , Pirazinamida/análise , Pirazinamida/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Titânio/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/instrumentação , Óxido de Zinco/químicaRESUMO
A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 µg L(-1) for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013-0.800, 0.011-0.900 and 0.079-1.400 mg L(-1) for F1, F2, and F3, respectively. The precision of the automated MSFIA-HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 µg L(-1) As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from an arsenic-contaminated mining zone to evaluate its extractability. The frequency of analysis of the proposed method was eight times higher than that of the conventional BCR method (6 vs 48 h), and the kinetics of lixiviation were established for each fraction.
Assuntos
Arsênio/análise , Fracionamento Químico/métodos , Poluentes do Solo/análise , Solo/química , Agricultura , Arsênio/isolamento & purificação , Fracionamento Químico/instrumentação , Desenho de Equipamento , Análise de Injeção de Fluxo/instrumentação , Análise de Injeção de Fluxo/métodos , Limite de Detecção , Poluentes do Solo/isolamento & purificação , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Espectrofotometria Atômica/instrumentação , Espectrofotometria Atômica/métodosRESUMO
The presence of arsenic (As) in agricultural food products is a matter of concern because it can cause adverse health effects at low concentrations. Agricultural-product intake constitutes a principal source for As exposure in humans. In this study, the contribution of the chemical-soil parameters in As accumulation and translocation in the maize crop from a mining area of San Luis Potosi was evaluated. The total arsenic concentration and arsenic speciation were determined by HG-AFS and IC-HG-AFS, respectively. The data analysis was conducted by cluster analysis (CA) and principal component analysis (PCA). The soil pH presented a negative correlation with the accumulated As in each maize plant part, and parameters such as iron (Fe) and manganese (Mn) presented a higher correlation with the As translocation in maize. Thus, the metabolic stress in maize may induce organic acid exudation leading a higher As bioavailability. A high As inorganic/organic ratio in edible maize plant tissues suggests a substantial risk of poisoning by this metalloid. Careful attention to the chemical changes in the rhizosphere of the agricultural zones that can affect As transfer through the food chain could reduce the As-intoxication risk of maize consumers.
Assuntos
Arsênio/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Zea mays/química , Agricultura , México , Mineração , Solo/químicaRESUMO
Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption.
Assuntos
Arsênio/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Agricultura , Produtos Agrícolas/metabolismo , Contaminação de Alimentos/estatística & dados numéricos , Solo/químicaRESUMO
Crops, particularly in the Northeast region of Mexico, have to cope with increasing soil salinization due to irrigation. Chloride (Cl(-)) concentration has been strongly related to enhance cadmium (Cd) uptake by plants due to increased solubility in the soil solution. The effect of irrigation with slightly saline water from a local well was evaluated in this work on the accumulation and translocation of Cd in Swiss chard (Beta vulgaris L.) grown in soil historically amended with stabilized sewage sludge under a regime of phosphorus and zinc fertilization. A factorial pot experiment was conducted with two phosphate fertilizer levels (PF, 0 and 80 kg ha(-1) dry soil, respectively), two Zn levels (0 and 7 kg ha(-1) dry soil), and two sources of water for irrigation deionized water (DW) and slightly saline well water (WW) from an agricultural site. Additionally, a human risk assessment for Cd ingestion from plants was assessed. Results showed that Cl(-) salinity in the WW effectively mobilized soil Cd and increased its phytoavailability. A higher level of Cd was found in roots (46.41 mg kg(-1)) compared to shoots (10.75 mg kg(-1)). Although the total content of Cd in the edible parts of the Swiss chard irrigated with WW exceeded permissible recommended consumption limit, bioavailable cadmium in the aboveground parts of the plant in relation to the total cadmium content was in the range from 8 to 32 %. Therefore, human health risks might be overestimated when the total concentration is taken into account.
Assuntos
Beta vulgaris/metabolismo , Cádmio/análise , Cloreto de Sódio/química , Poluentes do Solo/análise , Solo/química , Zinco/química , Irrigação Agrícola , Agricultura , Recuperação e Remediação Ambiental/métodos , Humanos , Raízes de Plantas , Medição de RiscoRESUMO
In this study, the solar photocatalytic activity (SPA) of WO3/TiO2 photocatalysts synthesized by the sol-gel method with two different percentages of WO3 (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO2 was also prepared by sol-gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV-vis spectroscopy (DRUV-vis), specific surface area by the BET method (SSABET), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO3 was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1 ± 0.1 nm for 2% WO3/TiO2 and 1.35 ± 0.3 nm for 5% WO3/TiO2) and uniformly dispersed on the surface of TiO2. The particle size of the materials was 19.4 ± 3.3 nm and 25.6 ± 3 nm for 2% and 5% WO3/TiO2, respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO3/TiO2 photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300 min compared to the 5% WO3/TiO2 and bare TiO2 photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO3/TiO2 catalyst activity on repeated uses; after several successive cycles its photocatalytic activity was retained showing long-term stability.
Assuntos
Malation/química , Óxidos/efeitos da radiação , Praguicidas/química , Titânio/efeitos da radiação , Tungstênio/efeitos da radiação , Poluentes Químicos da Água/química , Catálise , Óxidos/química , Fotólise , Luz Solar , Titânio/química , Tungstênio/químicaRESUMO
In this work, the potential of a membrane optode coupled to a multisyringe flow injection system (MSFIA) was assessed for determining the Cr(VI) concentration in paint samples. The detection is based on the color obtained from the reaction of Cr(VI) with 1,5-diphenylcarbazide in the presence of sulfuric acid (H(2)SO(4)). The redox product was immobilized on a poly(styrene-divinylbenzene) (SDB-XC) membrane optode. The analyte in the sample was then directly quantified at the surface of the disk by measuring the intensity of reflected incident light using a bifurcated optical fiber at 540 nm. Experimental parameters (concentration of reagents, sample volume, flow rate of sample solutions, eluent concentration, and effect of diverse ions) were studied in detail. The overall time required for the complete procedure was 4 min and only required 0.2 mL of the sample volume. The dynamic working response of Cr(VI) was found within the concentration range of 2.4-1000 µg L(-1) with a limit of detection (LOD) of 0.7 µg L(-1), while the relative standard deviation (RSD) for 400 µg L(-1) Cr(VI) was lower than 2% (n=6). This developed method was used to determine Cr(VI) concentrations in the paint samples, for which an alkaline extraction procedure was proposed. The extraction procedure was based on the use of a 7.5% Na(2)CO(3)/5% NaOH solution at 90 °C for 30 min. Under optimal conditions, the recoveries ranged from 99% to 101%. The complete method was validated using a certified reference material (ERA-QC540, soil sample) and by comparing the results with those obtained using atomic absorption spectrometry (AAS).
RESUMO
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 µg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 µg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.