Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Hum Mol Genet ; 31(8): 1263-1277, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34726233

RESUMO

Pathogenic variants in retinol dehydrogenase 5 (RDH5) attenuate supply of 11-cis-retinal to photoreceptors leading to a range of clinical phenotypes including night blindness because of markedly slowed rod dark adaptation and in some patients, macular atrophy. Current animal models (such as Rdh5-/- mice) fail to recapitulate the functional or degenerative phenotype. Addressing this need for a relevant animal model we present a new domestic cat model with a loss-of-function missense mutation in RDH5 (c.542G > T; p.Gly181Val). As with patients, affected cats have a marked delay in recovery of dark adaptation. In addition, the cats develop a degeneration of the area centralis (equivalent to the human macula). This recapitulates the development of macular atrophy that is reported in a subset of patients with RDH5 mutations and is shown in this paper in seven patients with biallelic RDH5 mutations. There is notable variability in the age at onset of the area centralis changes in the cat, with most developing changes as juveniles but some not showing changes over the first few years of age. There is similar variability in development of macular atrophy in patients and while age is a risk factor, it is hypothesized that genetic modifying loci influence disease severity, and we suspect the same is true in the cat model. This novel cat model provides opportunities to improve molecular understanding of macular atrophy and test therapeutic interventions for RDH5-associated retinopathies.


Assuntos
Degeneração Macular , Doenças Retinianas , Oxirredutases do Álcool/genética , Animais , Atrofia , Gatos , Eletrorretinografia , Humanos , Camundongos , Modelos Animais , Fenótipo , Doenças Retinianas/genética
2.
J Mol Evol ; 92(1): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324225

RESUMO

Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Humanos , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Estrutura Secundária de Proteína , Mutação
3.
Hum Mutat ; 43(5): 613-624, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266249

RESUMO

We assessed genotype-phenotype correlations among the visual, auditory, and olfactory phenotypes of 127 participants with Usher syndrome (USH2) (n =80) or nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) (n = 47) due to USH2A variants, using clinical data and molecular diagnostics from the Rate of Progression in USH2A Related Retinal Degeneration (RUSH2A) study. USH2A truncating alleles were associated with USH2 and had a dose-dependent effect on hearing loss severity with no effect on visual loss severity within the USH2 subgroup. A group of missense alleles in an interfibronectin domain appeared to be hypomorphic in ARRP. These alleles were associated with later age of onset, larger visual field area, better sensitivity thresholds, and better electroretinographic responses. No effect of genotype on the severity of olfactory deficits was observed. This study unveils a unique, tissue-specific USH2A allelic hierarchy with important prognostic implications for patient counseling and treatment trial endpoints. These findings may inform clinical care or research approaches in others with allelic disorders or pleiotropic phenotypes.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Proteínas da Matriz Extracelular/genética , Estudos de Associação Genética , Humanos , Mutação , Retinose Pigmentar/genética , Síndromes de Usher/genética
4.
Clin Genet ; 102(6): 524-529, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35916082

RESUMO

Non-syndromic retinitis pigmentosa (NSRP) is a clinically and genetically heterogeneous group of disorders characterized by progressive degeneration of the rod and cone photoreceptors, often leading to blindness. The evolving association of syndromic genes to cause NSRP and the increasing role of intronic variants in explaining missing heritability in genetic disorders present challenges in establishing conclusive clinical and genetic diagnoses. This study sought to identify and validate the causative genetic variant(s) in a 13-year-old male initially diagnosed with NSRP. Genome sequencing identified a pathogenic missense variant in MVK [NM_000431.3:c.803T>C (p.Ile268Thr)], in trans with a novel intronic variant predicted to create a new donor splice site (c.768+71C>A). Proband cDNA analysis confirmed the inclusion of the first 68 base pairs of intron 8 that resulted in a frameshift in MVK (r.768_769ins[768+1_768+68]) and significantly reduced the expression of reference transcript (17.6%). Patient re-phenotyping revealed ataxia, cerebellar atrophy, elevated urinary mevalonate and LTE4 , in keeping with mild mevalonic aciduria and associated syndromic retinitis pigmentosa. Leakage of reference transcript likely explains the milder phenotype observed in our patient. This is the first association of a deep intronic splice variant to cause MVK-related disorder. This report highlights the importance of variant validation and patient re-phenotyping in establishing accurate diagnosis in the era of genome sequencing.


Assuntos
Deficiência de Mevalonato Quinase , Retinose Pigmentar , Masculino , Humanos , Deficiência de Mevalonato Quinase/genética , Linhagem , Retinose Pigmentar/genética , Mutação , Íntrons
5.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743313

RESUMO

Certain combinations of common variants in exon 3 of OPN1LW and OPN1MW, the genes encoding the apo-protein of the long- and middle-wavelength sensitive cone photoreceptor visual pigments in humans, induce splicing defects and have been associated with dyschromatopsia and cone dysfunction syndromes. Here we report the identification of a novel exon 3 haplotype, G-C-G-A-T-T-G-G (referring to nucleotide variants at cDNA positions c.453, c.457, c.465, c.511, c.513, c.521, c.532, and c.538) deduced to encode a pigment with the amino acid residues L-I-V-V-A at positions p.153, p.171, p.174, p.178, and p.180, in OPN1LW or OPN1MW or both in a series of seven patients from four families with cone dysfunction. Applying minigene assays for all observed exon 3 haplotypes in the patients, we demonstrated that the novel exon 3 haplotype L-I-V-V-A induces a strong but incomplete splicing defect with 3-5% of residual correctly spliced transcripts. Minigene splicing outcomes were similar in HEK293 cells and the human retinoblastoma cell line WERI-Rb1, the latter retaining a cone photoreceptor expression profile including endogenous OPN1LW and OPN1MW gene expression. Patients carrying the novel L-I-V-V-A haplotype presented with a mild form of Blue Cone Monochromacy or Bornholm Eye Disease-like phenotype with reduced visual acuity, reduced cone electroretinography responses, red-green color vision defects, and frequently with severe myopia.


Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes/genética , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/metabolismo , Éxons/genética , Células HEK293 , Haplótipos , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(12): E2839-E2848, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507198

RESUMO

Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE-PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE-PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE-PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies.


Assuntos
Bestrofinas/genética , Oftalmopatias Hereditárias/terapia , Terapia Genética/métodos , Doenças Retinianas/terapia , Animais , Doenças do Cão/terapia , Cães , Oftalmopatias Hereditárias/diagnóstico por imagem , Oftalmopatias Hereditárias/patologia , Oftalmopatias Hereditárias/veterinária , Feminino , Vetores Genéticos/farmacologia , Humanos , Luz , Masculino , Mutação , Descolamento Retiniano/diagnóstico por imagem , Descolamento Retiniano/patologia , Descolamento Retiniano/terapia , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/patologia , Doenças Retinianas/veterinária , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
7.
Genet Med ; 22(12): 2041-2051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32753734

RESUMO

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Assuntos
Síndrome de Ellis-Van Creveld , Degeneração Retiniana , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Éxons , Humanos , Mutação , Linhagem , Retina , Degeneração Retiniana/genética
8.
Genet Med ; 22(3): 598-609, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31700164

RESUMO

PURPOSE: Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS: We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS: Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION: Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.


Assuntos
Anormalidades do Olho/genética , Predisposição Genética para Doença , Microftalmia/genética , Fator de Transcrição PAX6/genética , Adolescente , Adulto , Sítios de Ligação/genética , Criança , Pré-Escolar , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Anormalidades do Olho/patologia , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Microftalmia/patologia , Mutação de Sentido Incorreto/genética , Linhagem , Adulto Jovem
9.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710777

RESUMO

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Assuntos
Anormalidades Múltiplas/epidemiologia , Cerebelo/anormalidades , Anormalidades do Olho/epidemiologia , Pessoal de Saúde , Doenças Renais Císticas/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/terapia , Tronco Encefálico/patologia , Cerebelo/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/terapia , Diretrizes para o Planejamento em Saúde , Humanos , Rim/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/terapia , Fígado/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/terapia , Retina/patologia
10.
Doc Ophthalmol ; 140(3): 273-277, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31720979

RESUMO

OBJECTIVE: To report a unique retinal signaling defect in GNB5-related disease. METHODS: A 3-year-old female child underwent detailed systemic and ophthalmological evaluation. The eye examination included fundus photography, spectral domain optical coherence tomography and an extended protocol full-field electroretinography (ERG) including the ISCEV recommended standard steps. The dark-adapted (DA) ERGs were performed to a series of white flashes (range 0.006-30.0 cd s m-2) and two red flashes. The DA ERGs to higher stimulus intensities (3.0, 10.0 and 30.0 cd s m-2) were tested using a range of inter-stimulus intervals (ISI) of up to 60 s. In addition to standard light-adapted (LA) ERGs, a short-duration (0.5 s) LA 3.0 30-Hz flicker ERG and a long-duration LA ON-OFF ERG were also performed. Genetic testing included microarray, mitochondrial genome testing and whole exome sequencing. RESULTS: The child was diagnosed to have status epilepticus and bradycardia at 6 months of age. Subsequently, she was diagnosed to have global developmental delay and hypotonia. On ophthalmological evaluation, the child fixes and follows light. Fundus evaluation showed mild optic disk pallor; macular SD-OCT was normal. The dim flash DA ERGs (DA 0.006 and DA 0.01 cd s m-2) were non-detectable. DA red flash ERGs showed the presence of an x-wave (cone component) and no rod component. The DA 3.0, 10.0 and 30.0 ERGs showed electronegative configuration regardless of the ISI; the averaged a-wave amplitude (4 flashes) was smaller at shorter ISI but became normal at a prolonged ISI (60 s). The LA 30-Hz flicker ERG was severely reduced but detectable for the initial 0.5 s; this became non-detectable after 5 s of averaging. The LA 3.0 2-Hz ERG showed markedly reduced a- and b-wave amplitudes and a reduced b:a ratio; the LA ON-OFF ERGs were non-detectable. WES identified a homozygous null mutation in G protein subunit beta 5 (GNB5; c.1032C>A/p.Tyr344*). CONCLUSION: This report identifies for the first time a unique retinopathy associated with biallelic mutations in GNB5. The observed phenotype is consistent with a dual retinal signaling defect reminiscent of features of bradyopsia and rod ON-bipolar dysfunction.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/genética , Mutação , Doenças Retinianas/genética , Pré-Escolar , Adaptação à Escuridão/fisiologia , Eletrorretinografia/métodos , Oftalmopatias Hereditárias , Feminino , Humanos , Fenótipo , Estimulação Luminosa , Doenças Retinianas/diagnóstico , Doenças Retinianas/fisiopatologia , Tomografia de Coerência Óptica , Visão Ocular/genética , Sequenciamento do Exoma
11.
Proc Natl Acad Sci U S A ; 114(2): 400-405, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028229

RESUMO

Achromatopsia is an autosomal recessive disorder characterized by cone photoreceptor dysfunction. We recently identified activating transcription factor 6 (ATF6) as a genetic cause of achromatopsia. ATF6 is a key regulator of the unfolded protein response. In response to endoplasmic reticulum (ER) stress, ATF6 migrates from the ER to Golgi to undergo regulated intramembrane proteolysis to release a cytosolic domain containing a basic leucine zipper (bZIP) transcriptional activator. The cleaved ATF6 fragment migrates to the nucleus to transcriptionally up-regulate protein-folding enzymes and chaperones. ATF6 mutations in patients with achromatopsia include missense, nonsense, splice site, and single-nucleotide deletion or duplication changes found across the entire gene. Here, we comprehensively tested the function of achromatopsia-associated ATF6 mutations and found that they group into three distinct molecular pathomechanisms: class 1 ATF6 mutants show impaired ER-to-Golgi trafficking and diminished regulated intramembrane proteolysis and transcriptional activity; class 2 ATF6 mutants bear the entire ATF6 cytosolic domain with fully intact transcriptional activity and constitutive induction of downstream target genes, even in the absence of ER stress; and class 3 ATF6 mutants have complete loss of transcriptional activity because of absent or defective bZIP domains. Primary fibroblasts from patients with class 1 or class 3 ATF6 mutations show increased cell death in response to ER stress. Our findings reveal that human ATF6 mutations interrupt distinct sequential steps of the ATF6 activation mechanism. We suggest that increased susceptibility to ER stress-induced damage during retinal development underlies the pathology of achromatopsia in patients with ATF6 mutations.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/metabolismo , Mutação/genética , Morte Celular/genética , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Transcrição Gênica/genética
12.
Hum Mol Genet ; 26(21): 4203-4214, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088427

RESUMO

Membrane transporters influence biological functions in the ocular lens. Here, we investigate the monocarboxylate transporter 12 (MCT12), also called creatine transporter 2 (CRT2), which is found in the ocular lens and is involved in cataract. As the age-related form affects about half of the population world-wide, understanding relevant pathomechanisms is a prerequisite for exploring non-invasive treatments. We screened the coding exons of the gene SLC16A12 in 877 patients from five cohorts, including Caucasian and Asian ethnicities. A previously identified risk factor, SNP rs3740030, displayed different frequencies in the Asian cohorts but risk could not be established. In 15 patients 13 very rare heterozygous nucleotide substitutions were identified, of which eight led to non-synonymous and four to synonymous amino acid exchanges and one mapped to the canonical splice site in intron 3. Their impact on creatine transport was tested in Xenopus laevis oocytes and human HEK293T cells. Four variants (p.Ser158Pro, p.Gly205Val, p.Pro395Gln and p.Ser453Arg) displayed severe reduction in both model systems, indicating conserved function. Two of these, p.Gly205Val, and p.Ser453Arg, did not localize to the oocyte membrane, suggesting possible impacts on protein interactions for transporter processing. In support, exogenously supplied excess of MCT12's chaperone CD147 in HEK293T cells led to a partial recovery of the defective uptake activity from p.Gly205Val and also from mutant p.Pro395Gln, which did localize to the membrane. Our findings provide first insight in the molecular requirements of creatine transporter, with particular emphasis on rescuing effects by its chaperone CD147, which can provide useful pharmacological information for substrate delivery.


Assuntos
Basigina/administração & dosagem , Catarata/tratamento farmacológico , Catarata/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Basigina/farmacologia , Catarata/genética , Estudos de Coortes , Predisposição Genética para Doença , Células HEK293 , Humanos , Cristalino/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Fatores de Risco , Xenopus laevis
13.
Am J Hum Genet ; 98(5): 1011-1019, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27063057

RESUMO

Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the ß subunit of G protein heterotrimer (Gαßγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling.


Assuntos
Oftalmopatias Hereditárias/etiologia , Genes Recessivos/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Proteínas Heterotriméricas de Ligação ao GTP/genética , Mutação/genética , Miopia/etiologia , Cegueira Noturna/etiologia , Alelos , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Eletrorretinografia , Oftalmopatias Hereditárias/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Proteínas Heterotriméricas de Ligação ao GTP/química , Homozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miopia/patologia , Cegueira Noturna/patologia , Linhagem , Fenótipo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Acuidade Visual/genética
14.
Hum Mol Genet ; 25(11): 2283-2294, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27008867

RESUMO

Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.


Assuntos
Síndrome de Bardet-Biedl/genética , Predisposição Genética para Doença , Proteínas/genética , Distrofias Retinianas/genética , Adolescente , Animais , Síndrome de Bardet-Biedl/patologia , Modelos Animais de Doenças , Feminino , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Distrofias Retinianas/patologia , Peixe-Zebra/genética
15.
Hum Mol Genet ; 25(24): 5444-5459, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798110

RESUMO

Mutations in the ORF15 exon of the RPGR gene cause a common form of X-linked retinitis pigmentosa, which often results in severe loss of vision. In dogs and mice, gene augmentation therapy has been shown to arrest the progressive degeneration of rod and cone photoreceptors. However, the distribution of potentially treatable photoreceptors across the human retinas and the rate of degeneration are not known. Here, we have defined structural and functional features of the disease in 70 individuals with ORF15 mutations. We also correlated the features observed in patients with those of three Rpgr-mutant (Rpgr-ko, Rd9, and Rpgr-cko) mice. In patients, there was pronounced macular disease. Across the retina, rod and cone dysfunction showed a range of patterns and a spectrum of severity between individuals, but a high symmetry was observed between eyes of each individual. Genotype was not related to disease expression. In the Rpgr-ko mice, there were intra-retinal differences in rhodopsin and cone opsin trafficking. In Rd9 and Rpgr-cko mice, retinal degeneration showed inter-ocular symmetry. Longitudinal results in patients revealed localized rod and cone dysfunction with progression rates of 0.8 to 1.3 log per decade in sensitivity loss. Relatively retained rod and cone photoreceptors in mid- and far-peripheral temporal-inferior and nasal-inferior visual field regions should be good targets for future localized gene therapies in patients.


Assuntos
Proteínas do Olho/genética , Degeneração Retiniana/genética , Retinosquise/genética , Rodopsina/genética , Adolescente , Adulto , Idoso , Animais , Criança , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinosquise/patologia , Rodopsina/metabolismo , Adulto Jovem
16.
N Engl J Med ; 372(20): 1920-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25936984

RESUMO

Retinal gene therapy for Leber's congenital amaurosis, an autosomal recessive childhood blindness, has been widely considered to be safe and efficacious. Three years after therapy, improvement in vision was maintained, but the rate of loss of photoreceptors in the treated retina was the same as that in the untreated retina. Here we describe long-term follow-up data from three treated patients. Topographic maps of visual sensitivity in treated regions, nearly 6 years after therapy for two of the patients and 4.5 years after therapy for the third patient, indicate progressive diminution of the areas of improved vision. (Funded by the National Eye Institute; ClinicalTrials.gov number, NCT00481546.).


Assuntos
Terapia Genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiologia , Adolescente , Progressão da Doença , Seguimentos , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Mutação , Visão Ocular , Adulto Jovem
17.
Genet Med ; 20(4): 435-443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28771251

RESUMO

PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Testes Genéticos , Análise de Sequência de DNA , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Exoma , Feminino , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Testes Genéticos/métodos , Testes Genéticos/normas , Variação Genética , Humanos , Masculino , Anotação de Sequência Molecular , Fenótipo , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/normas , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/normas
18.
Ophthalmology ; 124(6): 859-872, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318638

RESUMO

PURPOSE: Assess the role of handheld optical coherence tomography (OCT) in guiding management decisions during diagnosis, treatment, and follow-up of eyes affected by retinoblastoma. DESIGN: Retrospective, noncomparative, single-institution case series. PARTICIPANTS: All children newly diagnosed with retinoblastoma from January 2011 to December 2015 who had an OCT session during their active treatment at The Hospital for Sick Children (SickKids) in Toronto, Canada. The OCT sessions for fellow eyes of unilateral retinoblastoma without any suspicious lesion and those performed more than 6 months after the last treatment were excluded. METHODS: Data collected included age at presentation, sex, family history, RB1 mutation status, 8th edition TNMH cancer staging and International Intraocular Retinoblastoma Classification (IIRC), and number of OCT sessions per eye. Details of each session were scored for indication-related details (informative or not) and assessed for guidance (directive or not), diagnosis (staging changed, new tumors found or excluded), treatment (modified, stopped, or modality shifted), or follow-up modified. MAIN OUTCOME MEASURES: Frequency of OCT-guided management decisions, stratified by indication and type of guidance (confirmatory vs. influential). RESULTS: Sixty-three eyes of 44 children had 339 OCT sessions over the course of clinical management (median number of OCT scans per eye, 5; range, 1-15). The age at presentation and presence of a heritable RB1 mutation significantly correlated with an increased number of OCT sessions. Indications included evaluation of post-treatment scar (55%) or fovea (16%), and posterior pole scanning for new tumors (11%). Of all sessions, 92% (312/339) were informative; 19 of 27 noninformative sessions had large, elevated lesions; of these, 14 of 19 were T2a or T2b (IIRC group C or D) eyes. In 94% (293/312) of the informative sessions, OCT directed treatment decisions (58%), diagnosis (16%), and follow-up (26%). Optical coherence tomography influenced and changed management from pre-OCT clinical plans in 15% of all OCT sessions and 17% of directive sessions. CONCLUSIONS: Optical coherence tomography improves the accuracy of clinical evaluation in retinoblastoma management.


Assuntos
Gerenciamento Clínico , Biópsia Guiada por Imagem , Neoplasias da Retina/terapia , Retinoblastoma/terapia , Tomografia de Coerência Óptica/métodos , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA de Neoplasias/genética , Tomada de Decisões , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Retina/patologia , Neoplasias da Retina/diagnóstico por imagem , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Retinoblastoma/diagnóstico por imagem , Retinoblastoma/genética , Retinoblastoma/patologia , Proteínas de Ligação a Retinoblastoma/genética , Estudos Retrospectivos , Ubiquitina-Proteína Ligases/genética , Acuidade Visual
19.
Am J Med Genet A ; 173(9): 2467-2471, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28742278

RESUMO

We report on a girl diagnosed prenatally with agenesis of the corpus callosum (ACC) on fetal ultrasound and MRI. On postnatal follow-up she was noted to have developmental delay, facial dysmorphism, autism spectrum disorder, and posterior polymorphous corneal dystrophy (PPD). Array-comparative genomic hybridization analysis (Array-CGH) showed a 2.05 Mb de novo interstitial deletion at 10p11.23p11.22. The deleted region overlaps 1 OMIM Morbid Map gene, ZEB1 (the zinc finger E-box binding homeobox transcription factor 1), previously associated with posterior polymorphous corneal dystrophy type 3 (PPCD3). To our best knowledge this is the first reported case with a deletion of the ZEB1 gene in an individual with ACC and PPD, showing that the haploinsufficiency of the ZEB1 is likely the cause of our patient's phenotype.


Assuntos
Agenesia do Corpo Caloso/genética , Transtorno do Espectro Autista/genética , Distrofias Hereditárias da Córnea/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Hibridização Genômica Comparativa , Distrofias Hereditárias da Córnea/diagnóstico por imagem , Distrofias Hereditárias da Córnea/fisiopatologia , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Deleção de Sequência/genética , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA