Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 151(7): 1595-607, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260145

RESUMO

Most studies on TCF7L2 SNP variants in the pathogenesis of type 2 diabetes (T2D) focus on a role of the encoded transcription factor TCF4 in ß cells. Here, a mouse genetics approach shows that removal of TCF4 from ß cells does not affect their function, whereas manipulating TCF4 levels in the liver has major effects on metabolism. In Tcf7l2(-/-) mice, the immediate postnatal surge in liver metabolism does not occur. Consequently, pups die due to hypoglycemia. By combining chromatin immunoprecipitation with gene expression profiling, we identify a TCF4-controlled metabolic gene program that is acutely activated in the postnatal liver. In concordance, adult liver-specific Tcf7l2 knockout mice show reduced hepatic glucose production during fasting and display improved glucose homeostasis when maintained on high-fat diet. Furthermore, liver-specific TCF4 overexpression increases hepatic glucose production. These observations imply that TCF4 directly activates metabolic genes and that inhibition of Wnt signaling may be beneficial in metabolic disease.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Redes e Vias Metabólicas , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica , Jejum/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Ativação Transcricional
2.
Cell ; 136(5): 903-12, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19269367

RESUMO

The small intestinal epithelium is the most rapidly self-renewing tissue of mammals. Proliferative cells are confined to crypts, while differentiated cell types predominantly occupy the villi. We recently demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression and intermingled with post-mitotic Paneth cells at crypt bottoms. We have now determined a gene signature for these Lgr5 stem cells. One of the genes within this stem cell signature is the Wnt target Achaete scute-like 2 (Ascl2). Transgenic expression of the Ascl2 transcription factor throughout the intestinal epithelium induces crypt hyperplasia and ectopic crypts on villi. Induced deletion of the Ascl2 gene in adult small intestine leads to disappearance of the Lgr5 stem cells within days. The combined results from these gain- and loss-of-function experiments imply that Ascl2 controls intestinal stem cell fate.


Assuntos
Células-Tronco Adultas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Intestino Delgado/citologia , Animais , Separação Celular , Deleção de Genes , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos
3.
Haematologica ; 106(2): 565-573, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241846

RESUMO

Mutant IDH1 (mIDH1) inhibitors have shown single-agent activity in relapsed/refractory AML, though most patients eventually relapse. We evaluated the efficacy and molecular mechanism of the combination treatment with azacitidine, which is currently the standard of care in older AML patients, and mIDH1 inhibitor BAY1436032. Both compounds were evaluated in vivo as single agents and in combination with sequential (azacitidine, followed by BAY1436032) or simultaneous application in two human IDH1 mutated AML xenograft models. Combination treatment significantly prolonged survival compared to single agent or control treatment (P<.005). The sequential combination treatment depleted leukemia stem cells (LSC) by 470-fold. Interestingly, the simultaneous combination treatment depleted LSCs by 33,150-fold compared to control mice. This strong synergy is mediated through inhibition of MAPK/ERK and RB/E2F signaling. Our data strongly argues for the concurrent application of mIDH1 inhibitors and azacitidine and predicts improved outcome of this regimen in IDH1 mutated AML patients.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Idoso , Compostos de Anilina , Animais , Benzimidazóis , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos
4.
J Hepatol ; 72(4): 725-735, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726117

RESUMO

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas/metabolismo , Prolina/biossíntese , Transdução de Sinais/genética , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Dietilnitrosamina/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HaCaT , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Pirrolina Carboxilato Redutases/deficiência , Pirrolina Carboxilato Redutases/genética , Ratos , Transcriptoma , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , delta-1-Pirrolina-5-Carboxilato Redutase
5.
Mol Cell ; 37(5): 607-19, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227366

RESUMO

The mechanism by which Wnt receptors transduce signals to activate downstream beta-catenin-mediated target gene transcription remains incompletely understood but involves Frizzled (Fz) receptor-mediated plasma membrane recruitment and activation of the cytoplasmic effector Dishevelled (Dvl). Here, we identify the deubiquitinating enzyme CYLD, the familial cylindromatosis tumor suppressor gene, as a negative regulator of proximal events in Wnt/beta-catenin signaling. Depletion of CYLD from cultured cells markedly enhances Wnt-induced accumulation of beta-catenin and target gene activation. Moreover, we demonstrate hyperactive Wnt signaling in human cylindroma skin tumors that arise from mutations in CYLD. At the molecular level, CYLD interacts with and regulates K63-linked ubiquitination of Dvl. Enhanced ubiquitination of the polymerization-prone DIX domain in CYLD-deficient cells positively links to the signaling activity of Dvl. Together, our results argue that loss of CYLD instigates tumor growth in human cylindromatosis through a mechanism in which hyperubiquitination of polymerized Dvl drives enhancement of Wnt responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Carcinoma de Apêndice Cutâneo/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Carcinoma de Apêndice Cutâneo/genética , Carcinoma de Apêndice Cutâneo/patologia , Proliferação de Células , Enzima Desubiquitinante CYLD , Proteínas Desgrenhadas , Células HeLa , Humanos , Lisina , Camundongos , Mutação , NF-kappa B/metabolismo , Fosfoproteínas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Tempo , Ativação Transcricional , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitinação , Proteínas Wnt/genética , Proteína Wnt3 , beta Catenina/genética
6.
Nature ; 476(7360): 293-7, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21727895

RESUMO

The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Trombospondinas/metabolismo , Proteínas Wnt/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores Frizzled/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Regeneração , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
7.
Nature ; 449(7165): 1003-7, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17934449

RESUMO

The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.


Assuntos
Colo/citologia , Intestino Delgado/citologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Alelos , Animais , Biomarcadores , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Camundongos , Celulas de Paneth/metabolismo , Receptores Acoplados a Proteínas G/genética
8.
Gastroenterology ; 141(4): 1371-80, 1380.e1-2, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21741923

RESUMO

BACKGROUND & AIMS: Protein tyrosine kinase 6 (PTK6) is expressed throughout the gastrointestinal tract and is a negative regulator of proliferation that promotes differentiation and DNA-damage-induced apoptosis in the small intestine. PTK6 is not expressed in normal mammary gland, but is induced in most human breast tumors. Signal transducer and activator of transcription 3 (STAT3) mediates pathogenesis of colon cancer and is a substrate of PTK6. We investigated the role of PTK6 in colon tumorigenesis. METHODS: Ptk6+/+ and Ptk6-/- mice were injected with azoxymethane alone or in combination with dextran sodium sulfate; formation of aberrant crypt foci and colon tumors was examined. Effects of disruption of Ptk6 on proliferation, apoptosis, and STAT3 activation were examined by immunoblot and immunohistochemical analyses. Regulation of STAT3 activation was examined in the HCT116 colon cancer cell line and young adult mouse colon cells. RESULTS: Ptk6-/- mice developed fewer azoxymethane-induced aberrant crypt foci and tumors. Induction of PTK6 increased apoptosis, proliferation, and STAT3 activation in Ptk6+/+ mice injected with azoxymethane. Disruption of Ptk6 impaired STAT3 activation following azoxymethane injection, and reduced active STAT3 levels in Ptk6-/- tumors. Stable knockdown of PTK6 reduced basal levels of active STAT3, as well as activation of STAT3 by epidermal growth factor in HCT116 cells. Disruption of Ptk6 reduced activity of STAT3 in young adult mouse colon cells. CONCLUSIONS: PTK6 promotes STAT3 activation in the colon following injection of the carcinogen azoxymethane and regulates STAT3 activity in mouse colon tumors and in the HCT116 and young adult mouse colon cell lines. Disruption of Ptk6 decreases azoxymethane-induced colon tumorigenesis in mice.


Assuntos
Focos de Criptas Aberrantes/prevenção & controle , Azoximetano , Carcinógenos , Colo/enzimologia , Neoplasias do Colo/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Quinases da Família src/deficiência , Focos de Criptas Aberrantes/enzimologia , Focos de Criptas Aberrantes/genética , Focos de Criptas Aberrantes/patologia , Animais , Apoptose , Proliferação de Células , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células HCT116 , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , Fator de Transcrição STAT3/genética , Transdução de Sinais , Fatores de Tempo , Quinases da Família src/genética
9.
J Med Chem ; 64(21): 15883-15911, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699202

RESUMO

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Naftiridinas/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
10.
SLAS Discov ; 26(8): 947-960, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34154424

RESUMO

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
11.
Cell Rep ; 36(3): 109394, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289372

RESUMO

Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteólise , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteômica , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
12.
Gastroenterology ; 137(3): 945-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19501589

RESUMO

BACKGROUND & AIMS: Protein tyrosine kinase 6 (PTK6) is expressed in epithelial linings of the gastrointestinal tract. PTK6 sensitizes the nontransformed Rat1a fibroblast cell line to apoptotic stimuli. The aim of this study was to determine if PTK6 regulates apoptosis in vivo after DNA damage in the small intestine. METHODS: Wild-type and Ptk6(-/-) mice were subjected to gamma-irradiation; intestinal tissues were collected, protein was isolated, and samples were fixed for immunohistochemical analyses at 0, 6, and 72 hours after the mice were irradiated. Expression of PTK6 was examined in the small intestine before and after irradiation. Apoptosis and proliferation were compared between wild-type and Ptk6(-/-) mice. Expression and activation of prosurvival signaling proteins were assessed. RESULTS: Irradiation induced PTK6 in crypt epithelial cells of the small intestine in wild-type mice. Induction of PTK6 corresponded with DNA damage-induced apoptosis in the wild-type small intestine. Following irradiation, the apoptotic response was impaired in the intestinal crypts of Ptk6(-/-) mice. Increased activation of AKT and extracellular signal-regulated kinase (ERK)1/2 and increased inhibitory phosphorylation of the proapoptotic protein BAD were detected in Ptk6(-/-) mice after irradiation. In response to the induction of apoptosis, compensatory proliferation increased in the small intestines of wild-type mice but not in Ptk6(-/-) mice at 6 hours after irradiation. CONCLUSIONS: PTK6 is a stress-induced kinase that promotes apoptosis by inhibiting prosurvival signaling. After DNA damage, induction of PTK6 is required for efficient apoptosis and inhibition of AKT and ERK1/2.


Assuntos
Apoptose/fisiologia , Dano ao DNA/fisiologia , Mucosa Intestinal/patologia , Quinases da Família src/fisiologia , Animais , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Dano ao DNA/efeitos da radiação , Ativação Enzimática , Raios gama , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
13.
Am J Pathol ; 174(3): 715-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19197002

RESUMO

Stem cells hold great promise for regenerative medicine, but have remained elusive in many tissues because of a lack of adequate definitive markers. Progress in mouse genetics has provided the tools for characterization and validation of stem cell markers by functional and/or lineage tracing assays. The Wnt target gene Lgr5 has been recently identified as a novel stem cell marker of the intestinal epithelium and the hair follicle. In the intestine, Lgr5 is exclusively expressed in cycling crypt base columnar cells. Genetic lineage-tracing experiments revealed that crypt base columnar cells are capable of self-renewal and multipotency, thus representing genuine intestinal stem cells. In the stem cell niche of the murine hair follicle, Lgr5 is expressed in actively cycling cells. Transplantation and lineage tracing experiments have demonstrated that these Lgr5(+ve) cells maintain all cell lineages of the hair follicle throughout long periods of time and can build entire new hair follicles. Expression of Lgr5 in multiple other organs indicates that it may represent a global marker of adult stem cells. This review attempts to provide a comprehensive overview of the stem cell compartments in the intestine and skin with a focus on the cycling, yet long-lived and multipotent, Lgr5(+ve) stem cell populations.


Assuntos
Intestinos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Fenômenos Fisiológicos da Pele , Células-Tronco/fisiologia , Proteínas Wnt/fisiologia , Animais , Divisão Celular , Digestão , Marcadores Genéticos , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Intestinos/citologia , Camundongos , Receptores Acoplados a Proteínas G/genética , Pele/citologia , Células-Tronco/citologia
14.
Oncotarget ; 11(8): 801-812, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32166001

RESUMO

SLC25A32 is a member of the solute carrier 25 family of mitochondrial transporters. SLC25A32 transports tetrahydrofolate (THF) as well as FAD into mitochondria and regulates mitochondrial one-carbon metabolism and redox balance. While it is known that cancer cells require one-carbon and FAD-dependent mitochondrial metabolism to sustain cell proliferation, the role of SLC25A32 in cancer cell growth remains unexplored. Our results indicate that the SLC25A32 gene is highly amplified in different tumors and that amplification correlates with increased mRNA expression and reduced patients´ survival. siRNA-mediated knock-down and CRISPR-mediated knock-out of SLC25A32 in cancer cells of different origins, resulted in the identification of cell lines sensitive and resistant to SLC25A32 inhibition. Mechanistically, tracing of deuterated serine revealed that SLC25A32 knock-down does not affect the mitochondrial/cytosolic folate flux as measured by Liquid Chromatography coupled Mass Spectrometry (LC-MS). Instead, SLC25A32 inhibition results in a respiratory chain dysfunction at the FAD-dependent complex II enzyme, induction of Reactive Oxygen Species (ROS) and depletion of reduced glutathione (GSH), which impairs cancer cell proliferation. Moreover, buthionine sulfoximine (BSO) treatment further sensitizes cells to ROS-mediated inhibition of cell proliferation upon SLC25A32 knock-down. Treatment of cells with the FAD precursor riboflavin and with GSH rescues cancer cell proliferation upon SLC25A32 down-regulation. Our results indicate that the reduction of mitochondrial FAD concentrations by targeting SLC25A32 has potential clinical applications as a single agent or in combination with approved cancer drugs that lead to increased oxidative stress and reduced tumor growth.

15.
Cancers (Basel) ; 12(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947537

RESUMO

Inhibiting the interaction of menin with the histone methyltransferase MLL1 (KMT2A) has recently emerged as a novel therapeutic strategy. Beneficial therapeutic effects have been postulated in leukemia, prostate, breast, liver and in synovial sarcoma models. In those indications, MLL1 recruitment by menin was described to critically regulate the expression of disease associated genes. However, most findings so far rely on single study reports. Here we independently evaluated the pathogenic functions of the menin-MLL interaction in a large set of different cancer models with a potent and selective probe inhibitor BAY-155. We characterized the inhibition of the menin-MLL interaction for anti-proliferation, gene transcription effects, and for efficacy in several in vivo xenografted tumor models. We found a specific therapeutic activity of BAY-155 primarily in AML/ALL models. In solid tumors, we observed anti-proliferative effects of BAY-155 in a surprisingly limited fraction of cell line models. These findings were further validated in vivo. Overall, our study using a novel, highly selective and potent inhibitor, shows that the menin-MLL interaction is not essential for the survival of most solid cancer models. We can confirm that disrupting the menin-MLL complex has a selective therapeutic benefit in MLL-fused leukemia. In solid cancers, effects are restricted to single models and more limited than previously claimed.

16.
Mol Cell Biol ; 26(13): 4949-57, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782882

RESUMO

Protein tyrosine kinase 6 (PTK6) (also called Brk or Sik) is an intracellular tyrosine kinase that is expressed in breast cancer and normal epithelial linings. In adult mice, PTK6 expression is high in villus epithelial cells of the small intestine. To explore functions of PTK6, we disrupted the mouse Ptk6 gene. We detected longer villi, an expanded zone of PCNA expression, and increased bromodeoxyuridine incorporation in the PTK6-deficient small intestine. Although differentiation of major epithelial cell types occurred, there was a marked delay in expression of intestinal fatty acid binding protein, suggesting a role for PTK6 in enterocyte differentiation. However, fat absorption was comparable in wild-type and Ptk6-/- mice. It was previously shown that the serine threonine kinase Akt is a substrate of PTK6 and that PTK6-mediated phosphorylation of Akt on tyrosine resulted in inhibition of Akt activity. Consistent with these findings, we detected increased Akt activity and nuclear beta-catenin in intestines of PTK6-deficient mice and decreased nuclear localization of the Akt substrate FoxO1 in villus epithelial cells. PTK6 contributes to maintenance of tissue homeostasis through negative regulation of Akt in the small intestine and is associated with cell cycle exit and differentiation in normal intestinal epithelial cells.


Assuntos
Proteínas de Transporte/fisiologia , Diferenciação Celular , Enterócitos/citologia , Enterócitos/enzimologia , Intestino Delgado/crescimento & desenvolvimento , Proteínas Tirosina Quinases/fisiologia , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Diferenciação Celular/genética , Linhagem da Célula , Movimento Celular/genética , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/metabolismo , Marcação de Genes , Intestino Delgado/citologia , Intestino Delgado/enzimologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Mutagênese Insercional , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , beta Catenina/metabolismo
17.
J Hematol Oncol ; 12(1): 66, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253180

RESUMO

INTRODUCTION: The chromosomal rearrangements of the mixed-lineage leukemia gene MLL (KMT2A) have been extensively characterized as a potent oncogenic driver in leukemia. For its oncogenic function, most MLL-fusion proteins exploit the multienzyme super elongation complex leading to elevated expression of MLL target genes. High expression of MLL target genes overwrites the normal hematopoietic differentiation program, resulting in undifferentiated blasts characterized by the capacity to self-renew. Although extensive resources devoted to increased understanding of therapeutic targets to overcome de-differentiation in ALL/AML, the inter-dependencies of targets are still not well described. The majority of inhibitors potentially interfering with MLL-fusion protein driven transformation have been characterized in individual studies, which so far hindered their direct cross-comparison. METHODS: In our study, we characterized head-to-head clinical stage inhibitors for BET, DHODH, DOT1L as well as two novel inhibitors for CDK9 and the Menin-MLL interaction with a focus on differentiation induction. We profiled those inhibitors for global gene expression effects in a large cell line panel and examined cellular responses such as inhibition of proliferation, apoptosis induction, cell cycle arrest, surface marker expression, morphological phenotype changes, and phagocytosis as functional differentiation readout. We also verified the combination potential of those inhibitors on proliferation and differentiation level. RESULTS: Our analysis revealed significant differences in differentiation induction and in modulating MLL-fusion target gene expression. We observed Menin-MLL and DOT1L inhibitors act very specifically on MLL-fused leukemia cell lines, whereas inhibitors of BET, DHODH and P-TEFb have strong effects beyond MLL-fusions. Significant differentiation effects were detected for Menin-MLL, DOT1L, and DHODH inhibitors, whereas BET and CDK9 inhibitors primarily induced apoptosis in AML/ALL cancer models. For the first time, we explored combination potential of the abovementioned inhibitors with regards to overcoming the differentiation blockage. CONCLUSION: Our findings show substantial diversity in the molecular activities of those inhibitors and provide valuable insights into the further developmental potential as single agents or in combinations in MLL-fused leukemia.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Histona-Lisina N-Metiltransferase/genética , Leucemia/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Rearranjo Gênico/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo
18.
Leukemia ; 33(10): 2403-2415, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940908

RESUMO

Acute myeloid leukemia (AML) is a devastating disease, with the majority of patients dying within a year of diagnosis. For patients with relapsed/refractory AML, the prognosis is particularly poor with currently available treatments. Although genetically heterogeneous, AML subtypes share a common differentiation arrest at hematopoietic progenitor stages. Overcoming this differentiation arrest has the potential to improve the long-term survival of patients, as is the case in acute promyelocytic leukemia (APL), which is characterized by a chromosomal translocation involving the retinoic acid receptor alpha gene. Treatment of APL with all-trans retinoic acid (ATRA) induces terminal differentiation and apoptosis of leukemic promyelocytes, resulting in cure rates of over 80%. Unfortunately, similarly efficacious differentiation therapies have, to date, been lacking outside of APL. Inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, was recently reported to induce differentiation of diverse AML subtypes. In this report we describe the discovery and characterization of BAY 2402234 - a novel, potent, selective and orally bioavailable DHODH inhibitor that shows monotherapy efficacy and differentiation induction across multiple AML subtypes. Herein, we present the preclinical data that led to initiation of a phase I evaluation of this inhibitor in myeloid malignancies.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pirimidinas/metabolismo , Células THP-1 , Translocação Genética/efeitos dos fármacos
19.
J Med Chem ; 62(2): 928-940, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30563338

RESUMO

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Pirimidinas/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Piridinas/metabolismo , Piridinas/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos
20.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679043

RESUMO

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Sistemas de Liberação de Medicamentos , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Células Cultivadas , Enzimas Reparadoras do DNA/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Hepatócitos/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Morfolinas/química , Neoplasias/fisiopatologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA