Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 859-865, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38051536

RESUMO

Broadband near-infrared light emitting tunnel junctions are demonstrated with efficient coupling to a silicon photonic waveguide. The metal oxide semiconductor devices show long hybrid photonic-plasmonic mode propagation lengths of approximately 10 µm and thus can be integrated into an overcoupled resonant cavity with quality factor Q ≈ 49, allowing for tens of picowatt near-infrared light emission coupled directly into a waveguide. The electron inelastic tunneling transition rate and the cavity mode density are modeled, and the transverse magnetic (TM) hybrid mode excitation rate is derived. The results coincide well with polarization resolved experiments. Additionally, current-stressed devices are shown to emit unpolarized light due to radiative recombination inside the silicon electrode.

2.
Nature ; 556(7702): 483-486, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29695845

RESUMO

For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology3-6, sensing7,8, nonlinear optics9,10, optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

3.
Nano Lett ; 21(11): 4539-4545, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34006114

RESUMO

We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal-insulator-metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O- and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.

4.
Opt Express ; 27(8): 11862-11868, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053025

RESUMO

We demonstrate a low-loss coupling scheme between a silicon photonic waveguide and a hybrid-plasmonic waveguide. Measured coupling efficiencies reach up to 94% or -0.27 dB. The metal-insulator-semiconductor structure is fabrication-tolerant and adaptable to a wide range of materials including those used in CMOS processes. The coupler is a promising building block for low-loss active plasmonic devices.

5.
Opt Express ; 25(3): 2627-2653, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519106

RESUMO

The performance of highly nonlinear organic electro-optic (EO) materials incorporated into nanoscale slots is examined. It is shown that EO coefficients as large as 190 pm/V can be obtained in 150 nm wide plasmonic slot waveguides but that the coefficients decrease for narrower slots. Possible mechanism that lead to such a decrease are discussed. Monte-Carlo computer simulations are performed, confirming that chromophore-surface interactions are one important factor influencing the EO coefficient in narrow plasmonic slots. These highly nonlinear materials are of particular interest for applications in optical modulators. However, in modulators the key parameters are the voltage-length product UπL and the insertion loss rather than the linear EO coefficients. We show record-low voltage-length products of 70 Vµm and 50 Vµm for slot widths in the order of 50 nm for the materials JRD1 and DLD164, respectively. This is because the nonlinear interaction is enhanced in narrow slot and thereby compensates for the reduced EO coefficient. Likewise, it is found that lowest insertion losses are observed for slot widths in the range 60 to 100 nm.

6.
Nano Lett ; 16(1): 709-14, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26670551

RESUMO

The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

7.
Nano Lett ; 15(12): 8342-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26570995

RESUMO

A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

8.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673072

RESUMO

In this study, we investigate the changes in the crystalline structure of MBE-deposited SrTiO3 layers on Si with different deviations from Sr/Ti stoichiometry as deposited but also after annealing at high temperatures (>600 °C). We show that as-grown 15 nm thick non-stochiometric SrTiO3 layers present surprisingly lower FWHM values of the (002) omega diffraction peak compared to fully stoichiometric layers of similar thickness. This can misleadingly point to superior crystalline quality of such non-stochiometric layers. However, thermal post-deposition anneals of these layers at temperatures up to 850 °C in oxygen show strong detrimental effects on the crystalline structure, surface and interface with the Si (001) substrate. On the contrary, the post-deposition anneals applied to the stoichiometric samples strongly improve the physical, optical and electrical properties of the epitaxial SrTiO3 thin films.

9.
ACS Nano ; 15(9): 14776-14785, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34459580

RESUMO

The typically nonlinear and asymmetric response of synaptic memristors to positive and negative electrical pulses makes the realization of accurate deep neural networks very challenging. Here, we integrate a two-terminal valence change memory (VCM) into a photonic/plasmonic circuit and show that the switching properties of this memristor become more gradual and symmetric under light irradiation. The added optical input acts on the VCM as a third, independent modulation channel. It locally heats the active area of the device, which enhances the generation of oxygen vacancies and broadens the resulting nanoscale conductive filaments. The measured conductance modulation of the VCM is then inserted into a neural network simulator. Using the MNIST data set of handwritten digits as an application, a light-enhanced recognition accuracy of 93.53% is demonstrated, similar to ideally performing memristors (94.86%) and much higher than those without light (67.37%). Notably, the optical signal does not increase the overall energy consumption by more than 3.2%. Finally, an approach to scale up our electro-optical technology is proposed, which could allow high-density, energy-efficient neuromorphic computing chips.


Assuntos
Redes Neurais de Computação , Sinapses , Nanotecnologia
10.
Nat Commun ; 10(1): 1694, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979888

RESUMO

Coherent optical communications provides the largest data transmission capacity with the highest spectral efficiency and therefore has a remarkable potential to satisfy today's ever-growing bandwidth demands. It relies on so-called in-phase/quadrature (IQ) electro-optic modulators that encode information on both the amplitude and the phase of light. Ideally, such IQ modulators should offer energy-efficient operation and a most compact footprint, which would allow high-density integration and high spatial parallelism. Here, we present compact IQ modulators with an active section occupying a footprint of 4 × 25 µm × 3 µm, fabricated on the silicon platform and operated with sub-1-V driving electronics. The devices exhibit low electrical energy consumptions of only 0.07 fJ bit-1 at 50 Gbit s-1, 0.3 fJ bit-1 at 200 Gbit s-1, and 2 fJ bit-1 at 400 Gbit s-1. Such IQ modulators may pave the way for application of IQ modulators in long-haul and short-haul communications alike.

11.
Science ; 366(6467): 860-864, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727832

RESUMO

Combining reprogrammable optical networks with complementary metal-oxide semiconductor (CMOS) electronics is expected to provide a platform for technological developments in on-chip integrated optoelectronics. We demonstrate how opto-electro-mechanical effects in micrometer-scale hybrid photonic-plasmonic structures enable light switching under CMOS voltages and low optical losses (0.1 decibel). Rapid (for example, tens of nanoseconds) switching is achieved by an electrostatic, nanometer-scale perturbation of a thin, and thus low-mass, gold membrane that forms an air-gap hybrid photonic-plasmonic waveguide. Confinement of the plasmonic portion of the light to the variable-height air gap yields a strong opto-electro-mechanical effect, while photonic confinement of the rest of the light minimizes optical losses. The demonstrated hybrid architecture provides a route to develop applications for CMOS-integrated, reprogrammable optical systems such as optical neural networks for deep learning.

12.
Science ; 358(6363): 630-632, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097545

RESUMO

Plasmonics provides a possible route to overcome both the speed limitations of electronics and the critical dimensions of photonics. We present an all-plasmonic 116-gigabits per second electro-optical modulator in which all the elements-the vertical grating couplers, splitters, polarization rotators, and active section with phase shifters-are included in a single metal layer. The device can be realized on any smooth substrate surface and operates with low energy consumption. Our results show that plasmonics is indeed a viable path to an ultracompact, highest-speed, and low-cost technology that might find many applications in a wide range of fields of sensing and communications because it is compatible with and can be placed on a wide variety of materials.

13.
Z Arztl Fortbild Qualitatssich ; 100(3): 203-7, 2006.
Artigo em Alemão | MEDLINE | ID: mdl-16768086

RESUMO

Scientific evaluation is a fundamental tool of effective quality assurance of continuing medical education (CME). The analysis of the evaluation system of the CME academy of one the German Regional Medical Associations has revealed both the strengths and weaknesses of this system, thus enabling the installation of a model-like quality control system. Of utmost importance is the construction of an evaluation form that must be designed for good selectivity of the items, and the quality of the event should be well represented by the evaluating questions. For comparison purposes, the evaluation form should be standardized according to international evaluation standards. The standards of the German Society of Evaluation (DeGEval) and the guidelines and recommendations of the German Medical Association are both suitable orientational aids for the evaluation form and the evaluation process. The assessment process should also follow international standardised principles; it should be timely and subjective elements of interpretation should be eliminated, which is required for the evaluation of continuing medical education to achieve credibility. Furthermore, it is also a prerequisite that consequences may follow from the evaluation of continuing medical education and the continuity of the quality assurance process.


Assuntos
Educação Médica Continuada/normas , Garantia da Qualidade dos Cuidados de Saúde , Alemanha , Humanos , Sociedades Médicas , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA