Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Digit Imaging ; 34(3): 554-571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33791909

RESUMO

Coronary computed tomography angiography (CCTA) evaluation of chest pain patients in an emergency department (ED) is considered appropriate. While a "negative" CCTA interpretation supports direct patient discharge from an ED, labor-intensive analyses are required, with accuracy in jeopardy from distractions. We describe the development of an artificial intelligence (AI) algorithm and workflow for assisting qualified interpreting physicians in CCTA screening for total absence of coronary atherosclerosis. The two-phase approach consisted of (1) phase 1-development and preliminary testing of an algorithm for vessel-centerline extraction classification in a balanced study population (n = 500 with 50% disease prevalence) derived by retrospective random case selection, and (2) phase 2-simulated clinical Trialing of developed algorithm on a per-case (entire coronary artery tree) basis in a more "real-world" study population (n = 100 with 28% disease prevalence) from an ED chest pain series. This allowed pre-deployment evaluation of the AI-based CCTA screening application which provides vessel-by-vessel graphic display of algorithm inference results integrated into a clinically capable viewer. Algorithm performance evaluation used area under the receiver operating characteristic curve (AUC-ROC); confusion matrices reflected ground truth vs AI determinations. The vessel-based algorithm demonstrated strong performance with AUC-ROC = 0.96. In both phase 1 and phase 2, independent of disease prevalence differences, negative predictive values at the case level were very high at 95%. The rate of completion of the algorithm workflow process (96% with inference results in 55-80 s) in phase 2 depended on adequate image quality. There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest pain presentations.


Assuntos
Doença da Artéria Coronariana , Inteligência Artificial , Dor no Peito/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Serviço Hospitalar de Emergência , Humanos , Estudos Retrospectivos
2.
Radiol Artif Intell ; 1(6): e180095, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33937804

RESUMO

PURPOSE: To delineate image data curation needs and describe a locally designed graphical user interface (GUI) to aid radiologists in image annotation for artificial intelligence (AI) applications in medical imaging. MATERIALS AND METHODS: GUI components support image analysis toolboxes, picture archiving and communication system integration, third-party applications, processing of scripting languages, and integration of deep learning libraries. For clinical AI applications, GUI components included two-dimensional segmentation and classification; three-dimensional segmentation and quantification; and three-dimensional segmentation, quantification, and classification. To assess radiologist engagement and performance efficiency associated with GUI-related capabilities, image annotation rate (studies per day) and speed (minutes per case) were evaluated in two clinical scenarios of varying complexity: hip fracture detection and coronary atherosclerotic plaque demarcation and stenosis grading. RESULTS: For hip fracture, 1050 radiographs were annotated over 7 days (150 studies per day; median speed: 10 seconds per study [interquartile range, 3-21 seconds per study]). A total of 294 coronary CT angiographic studies with 1843 arteries and branches were annotated for atherosclerotic plaque over 23 days (15.2 studies [80.1 vessels] per day; median speed: 6.08 minutes per study [interquartile range, 2.8-10.6 minutes per study] and 73 seconds per vessel [interquartile range, 20.9-155 seconds per vessel]). CONCLUSION: GUI-component compatibility with common image analysis tools facilitates radiologist engagement in image data curation, including image annotation, supporting AI application development and evolution for medical imaging. When complemented by other GUI elements, a continuous integrated workflow supporting formation of an agile deep neural network life cycle results.Supplemental material is available for this article.© RSNA, 2019.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA