Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 605(7911): 741-746, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508656

RESUMO

Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Adenosina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Imunoterapia , Camundongos , Fosfatidilinositol 3-Quinases , Quinolinas/uso terapêutico , Linfócitos T Reguladores
2.
Mol Pharm ; 16(10): 4361-4371, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31436094

RESUMO

Polymer-based amorphous solid dispersions (ASDs) comprise one of the most promising formulation strategies devised to improve the oral bioavailability of poorly water-soluble drugs. Exploitation of such systems in marketed products has been limited because of poor understanding of physical stability. The internal disordered structure and increased free energy provide a thermodynamic driving force for phase separation and recrystallization, which can compromise therapeutic efficacy and limit product shelf life. A primary concern in the development of stable ASDs is the solubility of the drug in the polymeric carrier, but there is a scarcity of reliable analytical techniques for its determination. In this work, terahertz (THz) Raman spectroscopy was introduced as a novel empirical approach to determine the saturated solubility of crystalline active pharmaceutical ingredient (API) in polymeric matrices directly during hot melt extrusion. The solubility of a model compound, paracetamol, in two polymer systems, Affinisol 15LV (HPMC) and Plasdone S630 (copovidone), was determined by monitoring the API structural phase transitions from crystalline to amorphous as an excess of crystalline drug dissolved in the polymeric matrix. THz-Raman results enabled construction of solubility phase diagrams and highlighted significant differences in the solubilization capacity of the two polymer systems. The maximum stable API-load was 20 wt % for Affinisol 15LV and 40 wt % for Plasdone S630. Differential scanning calorimetry and XRPD studies corroborated these results. This approach has demonstrated a novel capability to provide real-time API-polymer phase equilibria data in a manufacturing relevant environment and promising potential to predict solid-state solubility and physical stability of ASDs.


Assuntos
Acetaminofen/química , Composição de Medicamentos , Tecnologia de Extrusão por Fusão a Quente/métodos , Polímeros/química , Pirrolidinas/química , Análise Espectral Raman/métodos , Compostos de Vinila/química , Química Farmacêutica , Temperatura Alta , Excipientes Farmacêuticos/química , Solubilidade
3.
Mol Pharm ; 16(5): 1890-1905, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848917

RESUMO

Oral administration of a solid dosage form requires drug dissolution in the gastrointestinal tract before absorption. Solubility is a key factor controlling dissolution, and it is recognized that, within the intestinal tract, this is influenced by the luminal fluid pH, amphiphile content, and composition. Various simulated intestinal fluid recipes have been introduced to mimic this behavior and studied using a range of different experimental techniques. In this article, we have measured equilibrium solubility utilizing a novel four component mixture design (4CMD) with biorelevant amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) within a matrix of three pH values (5, 6, and 7) and total amphiphile concentrations (11.7, 30.6, and 77.5 mM) to provide a topographical and statistical overview. Three poorly soluble drugs representing acidic (indomethacin), basic (carvedilol), and neutral (fenofibrate) categories have been studied. The macroscopic solubility behavior agrees with literature and exhibits an overall increasing solubility from low pH and total amphiphile concentration to high pH and total amphiphile concentration. Within the matrix, all three drugs display different topographies, which can be related to the statistical effect levels of the individual amphiphiles or amphiphile interactions on solubility. The study also identifies previously unreported three and four way factor interactions notably between bile salt, phospholipid, pH, and total amphiphile concentration. In addition, the results also reveal that solubility variability is linked to the number of amphiphiles and the respective ratios in the measurement fluid, with the minimum variation present in systems containing all four amphiphiles. The individual 4CMD experiments within the matrix can be linked to provide a possible intestinal solubility window for each drug that could be applied in PBPK modeling systems. Overall the approach provides a novel overview of intestinal solubility topography along with greater detail on the impact of the various factors studied; however, each matrix requires 351 individual solubility measurements. Further studies will be required to refine the experimental protocol in order the maximize information garnered while minimizing the number of measurements required.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Líquidos Corporais/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos/fisiologia , Secreções Intestinais/química , Modelos Biológicos , Administração Oral , Ácidos e Sais Biliares/química , Carvedilol/química , Formas de Dosagem , Fenofibrato/química , Humanos , Concentração de Íons de Hidrogênio , Indometacina/química , Absorção Intestinal/fisiologia , Monoglicerídeos/química , Concentração Osmolar , Fosfolipídeos/química , Solubilidade , Tensoativos/química
4.
Mol Pharm ; 14(12): 4132-4144, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28749696

RESUMO

The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug-micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior.


Assuntos
Líquidos Corporais/fisiologia , Liberação Controlada de Fármacos/fisiologia , Absorção Intestinal/fisiologia , Intestinos/fisiologia , Tensoativos , Variação Biológica da População , Biofarmácia , Líquidos Corporais/química , Química Farmacêutica , Humanos , Concentração de Íons de Hidrogênio , Micelas , Modelos Biológicos , Solubilidade
5.
Mol Pharm ; 14(12): 4170-4180, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29072917

RESUMO

The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A prerequisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances, such as phospholipid, bile salt, monoglyceride, and cholesterol. To aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviors are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug's behavior in gastrointestinal fluids.


Assuntos
Líquidos Corporais/química , Técnicas In Vitro/métodos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/química , Administração Oral , Líquidos Corporais/fisiologia , Jejum/fisiologia , Estudos de Viabilidade , Humanos , Concentração de Íons de Hidrogênio , Intestinos/química , Intestinos/fisiologia , Preparações Farmacêuticas/administração & dosagem , Solubilidade
6.
Eur J Pharm Biopharm ; 199: 114302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657741

RESUMO

Orally administered solid drug must dissolve in the gastrointestinal tract before absorption to provide a systemic response. Intestinal solubility is therefore crucial but difficult to measure since human intestinal fluid (HIF) is challenging to obtain, varies between fasted (Fa) and fed (Fe) states and exhibits inter and intra subject variability. A single simulated intestinal fluid (SIF) cannot reflect HIF variability, therefore current approaches are not optimal. In this study we have compared literature Fa/FeHIF drug solubilities to values measured in a novel in vitro simulated nine media system for either the fasted (Fa9SIF) or fed (Fe9SIF) state. The manuscript contains 129 literature sampled human intestinal fluid equilibrium solubility values and 387 simulated intestinal fluid equilibrium solubility values. Statistical comparison does not detect a difference (Fa/Fe9SIF vs Fa/FeHIF), a novel solubility correlation window enclosed 95% of an additional literature Fa/FeHIF data set and solubility behaviour is consistent with previous physicochemical studies. The Fa/Fe9SIF system therefore represents a novel in vitro methodology for bioequivalent intestinal solubility determination. Combined with intestinal permeability this provides an improved, population based, biopharmaceutical assessment that guides formulation development and indicates the presence of food based solubility effects. This transforms predictive ability during drug discovery and development and may represent a methodology applicable to other multicomponent fluids where no single component is responsible for performance.


Assuntos
Jejum , Absorção Intestinal , Solubilidade , Equivalência Terapêutica , Humanos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Jejum/metabolismo , Administração Oral , Mucosa Intestinal/metabolismo , Secreções Intestinais/química , Secreções Intestinais/metabolismo , Permeabilidade
7.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896244

RESUMO

Solubility is a critical parameter controlling drug absorption after oral administration. For poorly soluble drugs, solubility is influenced by the complex composition of intestinal media and the influence of dosage form excipients, which can cause bioavailability and bioequivalence issues. This study has applied a small scale design of experiment (DoE) equilibrium solubility approach in order to investigate the impact of excipients on fenofibrate solubility in simulated fasted and fed intestinal media. Seven media parameters (bile salt (BS), phospholipid (PL), fatty acid, monoglyceride, cholesterol, pH and BS/PL ratio) were assessed in the DoE and in excipient-free media, and only pH and sodium oleate in the fasted state had a significant impact on fenofibrate solubility. The impact of excipients were studied at two concentrations, and for polyvinylpyrrolidone (PVP, K12 and K29/32) and hydroxypropylmethylcellulose (HPMC, E3 and E50), two grades were studied. Mannitol had no solubility impact in any of the DoE media. PVP significantly increased solubility in a media-, grade- and concentration-dependent manner, with the biggest change in fasted media. HPMC and chitosan significantly reduced solubility in both fasted and fed states in a media-, grade- and concentration-dependent manner. The results indicate that the impact of excipients on fenofibrate solubility is a complex interplay of media composition in combination with their physicochemical properties and concentration. The results indicate that in vitro solubility studies combining the drug of interest, proposed excipients along with suitable simulated intestinal media recipes will provide interesting information with the potential to guide formulation development.

8.
Eur J Pharm Biopharm ; 186: 74-84, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934829

RESUMO

For solid oral dosage forms drug solubility in intestinal fluid is an important parameter influencing product performance and bioavailability. Solubility along with permeability are the two parameters applied in the Biopharmaceutics and Developability Classification Systems (DCS) to assess a drug's potential for oral administration. Intestinal solubility varies with the intestinal contents and the differences between the fasted and fed states are recognised to influence solubility and bioavailability. In this study a novel fed state simulated media system comprising of nine media has been utilised to measure the solubility of seven drugs (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir) previously studied in the fasted state DCS. The results demonstrate that the fed nine media system provides a range of solubility values for each drug and solubility behaviour is consistent with published design of experiment studies conducted in either the fed or fasted state. Three drugs (griseofulvin, paracetamol and acyclovir) exhibit very narrow solubility distributions, a result that matches published behaviour in the fasted state, indicating that this property is not influenced by the concentration of simulated media components. The nine solubility values for each drug can be utilised to calculate a dose/solubility volume ratio to visualise the drug's position on the DCS grid. Due to the derivation of the nine media compositions the range and catergorisation could be considered as bioequivalent and can be combined with the data from the original fed intestinal fluid analysis to provide a population based solubility distribution. This provides further information on the drugs solubility behaviour and could be applied to quality by design formulation approaches. Comparison of the fed results in this study with similar published fasted results highlight that some differences detected match in vivo behaviour in food effect studies. This indicates that a combination of the fed and fasted systems may be a useful in vitro biopharmaceutical performance tool. However, it should be noted that the fed media recipes in this study are based on a liquid meal (Ensure Plus) and this may not be representative of alternative fed states achieved through ingestion of a solid meal. Nevertheless, this novel approach provides greater in vitro detail with respect to possible in vivo biopharmaceutical performance, an improved ability to apply risk-based approaches and the potential to investigate solubility based food effects. The system is therefore worthy of further investigation but studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.


Assuntos
Acetaminofen , Griseofulvina , Humanos , Solubilidade , Preparações Farmacêuticas , Intestinos , Administração Oral , Absorção Intestinal
9.
Eur J Pharm Biopharm ; 193: 58-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890541

RESUMO

Intestinal drug solubility is a key parameter controlling absorption after the administration of a solid oral dosage form. The ability to measure fed state solubility in vitro is limited and multiple simulated intestinal fluid recipes have been developed but with no consensus which is optimal. This study has utilised nine bioequivalent simulated fed intestinal media recipes that cover over 90% of the compositional variability of sampled fed human intestinal fluid. The solubility of 24 drugs (Acidic; furosemide, ibuprofen, indomethacin, mefenamic acid, naproxen, phenytoin, piroxicam, valsartan, zafirlukast: Basic; aprepitant, atazanavir, bromocriptine, carvedilol, dipyridamole, posaconazole, tadalafil: Neutral; acyclovir, carbamazepine, felodipine, fenofibrate, griseofulvin, itraconazole, paracetamol, probucol) has been assessed to determine if structured solubility behaviour is present. The measured solubility behaviour can be split into four categories and is consistent with drug physicochemical properties and previous solubility studies. For acidic drugs (category 1) solubility is controlled by media pH and the lowest and highest pH media identify the lowest and highest solubility in 90% of cases. For weakly acidic, basic and neutral drugs (category 2) solubility is controlled by media pH and total amphiphile concentration (TAC), a consistent solubility pattern is evident with variation related to individual drug media component interactions. The lowest and highest pH × TAC media identify the lowest and highest solubility in 70% and 90% of cases respectively. Four drugs, which are non-ionised in the media systems (category 3), have been identified with a very narrow solubility range, indicating minimal impact of the simulated media on solubility. Three drugs exhibit solubility behaviour that is not consistent with the remainder (category 4). The results indicate that the use of two bioequivalent fed intestinal media from the original nine will identify in vitro the maximum and minimum solubility values for the majority of drugs and due to the media derivation this is probably applicable in vivo. When combined with a previous fasted study, this introduces interesting possibilities to measure a solubility range in vitro that can provide Quality by Design based decisions to rationalise drug and formulation development. Overall this indicates that the multi-dimensional media system is worthy of further investigation as in vitro tool to assess fed intestinal solubility.


Assuntos
Indometacina , Intestinos , Humanos , Solubilidade , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química , Absorção Intestinal
10.
Int J Pharm ; 616: 121505, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35085732

RESUMO

The objective of this study was to develop an immediate release (IR), crystalline solid dispersion (CSD) formulation of Mefenamic acid (MFA) by hot-melt-extrusion (HME) and assess the impact of drug loading on process parameters, product physico-chemical properties and product performance. An HME process to produce a range of MFA-Soluplus®-Sorbitol polymer matrix CSD formulations was developed based on rheological screening assays of physical mixtures (PM). The impact of drug loading on process parameters was compared to the impact of drug loading on the physico-chemical properties of formulations. Based on process and product data, three groupings of API drug loading were identified: sub-saturated, saturated, and supersaturated systems. CSD formulations were obtained for 20-50% (w/w) drug loading containing the stable polymorphic form I of MFA. CSD formulations predominantly improved the consistency of the product performance. An Amorphous Solid Dispersion (ASD) was obtained for 10% (w/w) drug loading, exhibiting faster drug release even at physiologically relevant pH. This study illustrates the impact of drug loading on process and product characteristics and how a better understanding of maximum API solubility in a given polymer system can improve targeted formulation development.


Assuntos
Química Farmacêutica , Ácido Mefenâmico , Composição de Medicamentos , Liberação Controlada de Fármacos , Tecnologia de Extrusão por Fusão a Quente , Temperatura Alta , Solubilidade
11.
Eur J Pharm Biopharm ; 177: 126-134, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35718078

RESUMO

Intestinal drug solubility is a key parameter controlling oral absorption but varies both intra and inter individuals and between the fasted and fed states, with food intake known to alter the bioavailability of many compounds. Intestinal solubility can be measured in vitro either using sampled fed human intestinal fluid (FeHIF) or simulated fed intestinal fluid (SIF) but neither approach is optimal. FeHIF is difficult to obtain and variable, whilst for fed SIF multiple recipes are available with no consensus on the ideal version. A recent study characterised FeHIF aspirates using a multidimensional approach and calculated nine simulated media recipes that covered over ninety percent of FeHIF compositional variability. In this study the equilibrium solubility of thirteen drugs have been measured using the nine simulated media recipes and compared to multiple previous design of experiment (DoE) studies, which have examined the impact of fed SIF media components on solubility. The measured nine media solubility data set is only statistically equivalent to the large scale 92 media DoE in 4 out of 13 drug comparisons, but has improved equivalence against small scale DoEs (9 or 10 media) with 6 out of 9 or 10 out of 12 (9 and 10 media respectively) equivalent. Selective removal of non-biorelevant compositions from the 92 media DoE improves statistical equivalence to 9 out of 13 comparisons. The results indicate that solubility equivalence is linked to media component concentrations and compositions, the nine media system is measuring a similar solubility space to previous systems, with a narrower solubility range than the 92 point DoE but equivalent to smaller DoE systems. Phenytoin and tadalafil display a narrow solubility range, a behaviour consistent with previous studies in fed and fasted states and only revealed through the multiple media approach. Custom DoE analysis of the nine media results to determine the most statistically significant component influencing solubility does not detect significant components. Indicating that the approach has a low statistical resolution and is not appropriate if determination of media component significance is required. This study demonstrates that it is possible to assess the fed intestinal equilibrium solubility envelope using the nine media recipes obtained from a multi-dimensional analysis of fed HIF. The derivation of the nine media compositions coupled with the results in this study indicate that the solubility results are more likely to reflect the fed intestinal solubility envelope than previous DoE studies and highlight that the system is worthy of further investigation.


Assuntos
Secreções Intestinais , Intestinos , Jejum , Humanos , Técnicas In Vitro , Absorção Intestinal , Solubilidade
12.
Eur J Pharm Biopharm ; 176: 108-121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605926

RESUMO

Drug solubility in intestinal fluid is a key parameter controlling absorption after the administration of a solid oral dosage form. To measure solubility in vitro simulated intestinal fluids have been developed, but there are multiple recipes and the optimum is unknown. This situation creates difficulties during drug discovery and development research. A recent study characterised sampled fasted intestinal fluids using a multidimensional approach to derive nine bioequivalent fasted intestinal media that covered over 90% of the compositional variability. These media have been applied in this study to examine the equilibrium solubility of twenty one exemplar drugs (naproxen, indomethacin, phenytoin, zafirlukast, piroxicam, ibuprofen, mefenamic acid, furosemide, aprepitant, carvedilol, tadalafil, dipyridamole, posaconazole, atazanavir, fenofibrate, felodipine, griseofulvin, probucol, paracetamol, acyclovir and carbamazepine) to determine if consistent solubility behaviour was present. The bioequivalent media provide in the majority of cases structured solubility behaviour that is consistent with physicochemical properties and previous solubility studies. For the acidic drugs (pKa < 6.3) solubility is controlled by media pH, the profile is identical and consistent and the lowest and highest pH media identify the lowest and highest solubility in over 70% of cases. For weakly acidic (pKa > 8), basic and neutral drugs solubility is controlled by a combination of media pH and total amphiphile concentration (TAC), a consistent solubility behaviour is evident but with variation related to individual drug interactions within the media. The lowest and highest pH × TAC media identify the lowest and highest solubility in over 78% of cases. A subset of the latter category consisting of neutral and drugs non-ionised in the media pH range have been identified with a very narrow solubility range, indicating that the impact of the simulated intestinal media on their solubility is minimal. Two drugs probucol and atazanavir exhibit unusual behaviour. The study indicates that the use of two appropriate bioequivalent fasted intestinal media from the nine will identify in vitro the maximum and minimum solubility boundaries for drugs and due to the media derivation this is probably applicable in vivo. These media could be applied during discovery and development activities to provide a solubility range, which would assist placement of the drug within the BCS/DCS and rationalise drug and formulation decisions.


Assuntos
Absorção Intestinal , Probucol , Administração Oral , Sulfato de Atazanavir , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química , Solubilidade
13.
Eur J Pharm Biopharm ; 170: 160-169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923138

RESUMO

After oral administration, a drug's solubility in intestinal fluid is an important parameter influencing bioavailability and if the value is known it can be applied to estimate multiple biopharmaceutical parameters including the solubility limited absorbable dose. Current in vitro measurements may utilise fasted human intestinal fluid (HIF) or simulated intestinal fluid (SIF) to provide an intestinal solubility value. This single point value is limited since its position in relation to the fasted intestinal solubility envelope is unknown. In this study we have applied a nine point fasted equilibrium solubility determination in SIF, based on a multi-dimensional analysis of fasted human intestinal fluid composition, to seven drugs that were previously utilised to investigate the developability classification system (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir). The resulting fasted equilibrium solubility envelope encompasses literature solubility values in both HIF and SIF indicating that it measures the same solubility space as current approaches with solubility behaviour consistent with previous SIF design of experiment studies. In addition, it identifies that three drugs (griseofulvin, paracetamol and acyclovir) have a very narrow solubility range, a feature that single point solubility approaches would miss. The measured mid-point solubility value is statistically equivalent to the value determined with the original fasted simulated intestinal fluid recipe, further indicating similarity and that existing literature results could be utilised as a direct comparison. Since the multi-dimensional approach covered greater than ninety percent of the variability in fasted intestinal fluid composition, the measured maximum and minimum equilibrium solubility values should represent the extremes of fasted intestinal solubility and provide a range. The seven drugs all display different solubility ranges and behaviours, a result also consistent with previous studies. The dose/solubility ratio for each measurement point can be plotted using the developability classification system to highlight individual drug behaviours. The lowest solubility represents a worst-case scenario which may be useful in risk-based quality by design biopharmaceutical calculations than the mid-point value. The method also permits a dose/solubility ratio frequency distribution determination for the solubility envelope which permits further risk-based refinement, especially where the drug crosses a classification boundary. This novel approach therefore provides greater in vitro detail with respect to possible biopharmaceutical performance in vivo and an improved ability to apply risk-based analysis to biopharmaceutical performance. Further studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.


Assuntos
Biofarmácia , Secreções Intestinais/química , Preparações Farmacêuticas/química , Administração Oral , Disponibilidade Biológica , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Preparações Farmacêuticas/administração & dosagem , Solubilidade
14.
Pharmaceutics ; 14(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145688

RESUMO

Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.

15.
Int J Pharm ; 624: 121956, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35760259

RESUMO

With advancements in the pharmaceutical industry pushing more towards tailored medicines, novel approaches to tablet manufacture are in high demand. One of the main drivers towards micro-scale batch production is the ability to fine-tune drug release. This study demonstrates the use of rapid tooling injection moulding (RTIM) for tablet manufacture. Tablets were manufactured with varying structural features to alter the surface area whilst maintaining the same volume, resulting in differing specific surface area (SSA). The precision of this technique is evaluated based on eleven polymer formulations, with the tablets displaying <2% variability in mass. Further tablets were produced containing paracetamol in three different polymer-based formulations to investigate the impact of SSA on the drug release. Significant differences were observed between the formulations based on the polymers polyvinyl alcohol (PVA) and Klucel ELF. The polymer base of the formulation was found to be critical to the sensitivity of the drug release profile to SSA modification. The drug release profile within each formulation was modified by the addition of structural features to increase the SSA.


Assuntos
Álcool de Polivinil , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Polímeros/química , Álcool de Polivinil/química , Solubilidade , Comprimidos/química , Tecnologia Farmacêutica/métodos
16.
Int J Pharm ; 628: 122191, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36191816

RESUMO

Amorphous solid dispersions (ASDs) are formulations with enhanced drug solubility and dissolution rate compared to their crystalline counterparts, however, they can be inherently thermodynamically unstable. This can lead to amorphous phase separation and drug re-crystallisation, phenomena that are typically faster and more dominant at the product's surfaces. This study investigates the use of high-resolution time of flight-secondary ion mass spectrometry (ToF-SIMS) imaging as a surface analysis technique combined with image-analysis for the early detection, monitoring and quantification of surface amorphous phase separation in ASDs. Its capabilities are demonstrated for two pharmaceutically relevant ASD systems with distinct re-crystallisation behaviours, prepared using hot melt extrusion (HME) followed by pelletisation or grinding: (1) paracetamol-hydroxypropyl methylcellulose (PCM-HPMC) pellets with drug loadings of 10%-50% w/w and (2) indomethacin-polyvinylpyrrolidone (IND-PVP) ground material with drug loadings of 20%-85% w/w. PCM-HPMC pellets showed intense phase separation, reaching 100% PCM surface coverage within 1-5 months. In direct comparison, IND-PVP HME ground material was more stable with only a moderate formation of isolated IND-rich clusters. Image analysis allowed the reliable detection and quantification of local drug-rich clusters. An Avrami model was applied to determine and compare phase separation kinetics. The combination of chemical sensitivity and high spatial resolution afforded by SIMS was crucial to enable the study of early phase separation and re-crystallisation at the surface. Compared with traditional methods used to detect crystalline material, such as XRPD, we show that ToF-SIMS enabled detection of surface physical instability already at early stages of drug cluster formation in the first days of storage.


Assuntos
Povidona , Espectrometria de Massa de Íon Secundário , Solubilidade , Composição de Medicamentos/métodos , Povidona/química , Derivados da Hipromelose/química , Indometacina/química , Estabilidade de Medicamentos
17.
Cryst Growth Des ; 22(7): 4146-4156, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35915669

RESUMO

Polymorphism and crystal habit play vital roles in dictating the properties of crystalline materials. Here, the structure and properties of oxcarbazepine (OXCBZ) form III are reported along with the occurrence of twisted crystalline aggregates of this metastable polymorph. OXCBZ III can be produced by crystallization from the vapor phase and by recrystallization from solution. The crystallization process used to obtain OXCBZ III is found to affect the pitch, with the most prominent effect observed from the sublimation-grown OXCBZ III material where the pitch increases as the length of aggregates increases. Sublimation-grown OXCBZ III follows an unconventional mechanism of formation with condensed droplet formation and coalescence preceding nucleation and growth of aggregates. A crystal structure determination of OXCBZ III from powder X-ray diffraction methods, assisted by crystal structure prediction (CSP), reveals that OXCBZ III, similar to carbamazepine form II, contains void channels in its structure with the channels, aligned along the c crystallographic axis, oriented parallel to the twist axis of the aggregates. The likely role of structural misalignment at the lattice or nanoscale is explored by considering the role of molecular and closely related structural impurities informed by crystal structure prediction.

18.
Int J Pharm ; 626: 122116, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987318

RESUMO

Recent years have seen the advent of Quality-by-Design (QbD) as a philosophy to ensure the quality, safety, and efficiency of pharmaceutical production. The key pharmaceutical processing methodology of Direct Compression to produce tablets is also the focus of some research. The traditional Design-of-Experiments and purely experimental approach to achieve such quality and process development goals can have significant time and resource requirements. The present work evaluates potential for using combined modelling and experimental approach, which may reduce this burden by predicting the properties of multicomponent tablets from pure component compression and compaction model parameters. Additionally, it evaluates the use of extrapolation from binary tablet data to determine theoretical pure component model parameters for materials that cannot be compacted in the pure form. It was found that extrapolation using binary tablet data - where one known component can be compacted in pure form and the other is a challenging material which cannot be - is possible. Various mixing rules have been evaluated to assess which are suitable for multicomponent tablet property prediction, and in the present work linear averaging using pre-compression volume fractions has been found to be the most suitable for compression model parameters, while for compaction it has been found that averaging using a power law equation form produced the best agreement with experimental data. Different approaches for estimating component volume fractions have also been evaluated, and using estimations based on theoretical relative rates of compression of the pure components has been found to perform slightly better than using constant volume fractions (that assume a fully compressed mixture). The approach presented in this work (extrapolation of, where necessary, binary tablet data combined with mixing rules using volume fractions) provides a framework and path for predictions for multicomponent tablets without the need for any additional fitting based on the multicomponent formulation composition. It allows the knowledge space of the tablet to be rapidly evaluated, and key regions of interest to be identified for follow-up, targeted experiments that that could lead to an establishment of a design and control space and forgo a laborious initial Design-of-Experiments.


Assuntos
Química Farmacêutica , Modelos Teóricos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Pós , Comprimidos , Resistência à Tração
19.
Eur J Pharm Biopharm ; 168: 90-96, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419602

RESUMO

Drug solubility is a key parameter controlling oral absorption, but intestinal solubility is difficult to assess in vitro. Human intestinal fluid (HIF) aspirates can be applied but they are variable, difficult to obtain and expensive. Simulated intestinal fluids (SIF) are a useful surrogate but multiple recipes are available and the optimum is unknown. A recent study characterised fasted HIF aspirates using a multi-dimensional approach and determined nine bioequivalent SIF media recipes that represented over ninety percent of HIF compositional variability. In this study these recipes have been applied to determine the equilibrium solubility of twelve drugs (naproxen, indomethacin, phenytoin, piroxicam, aprepitant, carvedilol, zafirlukast, tadalafil, fenofibrate, griseofulvin, felodipine, probucol) previously investigated using a statistical design of experiment (DoE) approach. The bioequivalent solubility measurements are statistically equivalent to the previous DoE, enclose literature solubility values in both fasted HIF and SIF, and the solubility range is less than the previous DoE. These results indicate that the system is measuring the same solubility space as literature systems with the lower overall range suggesting improved equivalence to in vivo solubility, when compared to DoEs. Three drugs (phenytoin, tadalafil and griseofulvin) display a comparatively narrow solubility range, a behaviour that is consistent with previous studies and related to the drugs' molecular structure and properties. This solubility behaviour would not be evident with single point solubility measurements. The solubility results can be analysed using a custom DoE to determine the most statistically significant factor within the media influencing solubility. This approach has a lower statistical resolution than a formal DoE and is not appropriate if determination of media factor significance for solubilisation is required. This study demonstrates that it is possible to assess the fasted intestinal equilibrium solubility envelope using a small number of bioequivalent media recipes obtained from a multi-dimensional analysis of fasted HIF. The derivation of the nine bioequivalent SIF media coupled with the lower measured solubility range indicate that the solubility results are more likely to reflect the fasted intestinal solubility envelope than previous DoE studies and highlight that intestinal solubility is a range and not a single value.


Assuntos
Absorção Intestinal , Secreções Intestinais/metabolismo , Preparações Farmacêuticas/química , Administração Oral , Jejum , Humanos , Técnicas In Vitro , Preparações Farmacêuticas/administração & dosagem , Solubilidade , Equivalência Terapêutica
20.
J Pharm Sci ; 109(11): 3462-3470, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853635

RESUMO

The objective of this study was to develop an immediate release dose form containing 250 mg Mefenamic acid (MFA) presented as a crystalline solid dispersion in order to achieve improved consistency in drug release through a simplified formulation compared to a commercial product. An MFA-Soluplus®-Sorbitol polymer matrix was developed using an HME process based on rheological screening assays of physical mixtures. The physico-chemical properties of these formulations were assessed by thermal analysis, FTIR, mechanical testing and SEM image analysis, confirming the crystalline character and stable polymorphic form I of the API in the polymer matrix. A faster release and a significant improvement in consistency (±6%) of drug release was observed compared to a commercially available MFA product (±17%) (250 mg capsule). This study illustrates advantages of applying a structured development program aimed at retaining API physical properties in the final dosage form.


Assuntos
Química Farmacêutica , Ácido Mefenâmico , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA