Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 19(1): 59, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690860

RESUMO

BACKGROUND: Current myoelectric prostheses lack proprioceptive information and rely on vision for their control. Sensory substitution is increasingly developed with non-invasive vibrotactile or electrotactile feedback, but most systems are designed for grasping or object discriminations, and few were tested for online control in amputees. The objective of this work was evaluate the effect of a novel vibrotactile feedback on the accuracy of myoelectric control of a virtual elbow by healthy subjects and participants with an upper-limb amputation at humeral level. METHODS: Sixteen, healthy participants and 7 transhumeral amputees performed myoelectric control of a virtual arm under different feedback conditions: vision alone (VIS), vibration alone (VIB), vision plus vibration (VIS + VIB), or no feedback at all (NO). Reach accuracy was evaluated by angular errors during discrete as well as back and forth movements. Healthy participants' workloads were assessed with the NASA-TLX questionnaire, and feedback conditions were ranked according to preference at the end of the experiment. RESULTS: Reach errors were higher in NO than in VIB, indicating that our vibrotactile feedback improved performance as compared to no feedback. Conditions VIS and VIS+VIB display similar levels of performance and produced lower errors than in VIB. Vision remains therefore critical to maintain good performance, which is not ameliorated nor deteriorated by the addition of vibrotactile feedback. The workload associated with VIB was higher than for VIS and VIS+VIB, which did not differ from each other. 62.5% of healthy subjects preferred the VIS+VIB condition, and ranked VIS and VIB second and third, respectively. CONCLUSION: Our novel vibrotactile feedback improved myoelectric control of a virtual elbow as compared to no feedback. Although vision remained critical, the addition of vibrotactile feedback did not improve nor deteriorate the control and was preferred by participants. Longer training should improve performances with VIB alone and reduce the need of vision for close-loop prosthesis control.


Assuntos
Amputados , Membros Artificiais , Cotovelo , Eletromiografia , Retroalimentação Sensorial , Voluntários Saudáveis , Humanos , Propriocepção , Desenho de Prótese
2.
J Physiol ; 599(19): 4455-4476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411301

RESUMO

KEY POINTS: In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT: The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.


Assuntos
5-Hidroxitriptofano , Levodopa , 5-Hidroxitriptofano/farmacologia , Animais , Animais Recém-Nascidos , Dopamina , Levodopa/farmacologia , Ratos , Serotonina
3.
J Neuroeng Rehabil ; 18(1): 3, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407618

RESUMO

BACKGROUND: Prosthetic restoration of reach and grasp function after a trans-humeral amputation requires control of multiple distal degrees of freedom in elbow, wrist and fingers. However, such a high level of amputation reduces the amount of available myoelectric and kinematic information from the residual limb. METHODS: To overcome these limits, we added contextual information about the target's location and orientation such as can now be extracted from gaze tracking by computer vision tools. For the task of picking and placing a bottle in various positions and orientations in a 3D virtual scene, we trained artificial neural networks to predict postures of an intact subject's elbow, forearm and wrist (4 degrees of freedom) either solely from shoulder kinematics or with additional knowledge of the movement goal. Subjects then performed the same tasks in the virtual scene with distal joints predicted from the context-aware network. RESULTS: Average movement times of 1.22s were only slightly longer than the naturally controlled movements (0.82 s). When using a kinematic-only network, movement times were much longer (2.31s) and compensatory movements from trunk and shoulder were much larger. Integrating contextual information also gave rise to motor synergies closer to natural joint coordination. CONCLUSIONS: Although notable challenges remain before applying the proposed control scheme to a real-world prosthesis, our study shows that adding contextual information to command signals greatly improves prediction of distal joint angles for prosthetic control.


Assuntos
Membros Artificiais , Redes Neurais de Computação , Adulto , Braço , Fenômenos Biomecânicos , Mãos , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Ombro
4.
J Neuroeng Rehabil ; 17(1): 27, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075664

RESUMO

The original article [1] contained an error whereby the captions to Fig. 3 and Fig. 8 were mistakenly interchanged.

5.
J Neuroeng Rehabil ; 16(1): 138, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722740

RESUMO

BACKGROUND: Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated. METHOD: We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found. RESULTS: Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors' activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement. DISCUSSION: These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.


Assuntos
Amputados , Braço/fisiologia , Percepção do Tato/fisiologia , Vibração , Adulto , Idoso , Antropometria , Membros Artificiais , Discriminação Psicológica , Retroalimentação Sensorial , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Percepção Espacial/fisiologia , Extremidade Superior , Adulto Jovem
6.
Front Neurorobot ; 13: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474846

RESUMO

To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.

7.
Front Mol Neurosci ; 10: 198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676743

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN) and decreased in parvalbumin (PV)-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target for early therapeutic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA