Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
RNA ; 19(5): 627-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525800

RESUMO

Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.


Assuntos
Diferenciação Celular/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Splicing de RNA/genética , Proteínas de Ligação a RNA , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Células Cultivadas , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células HeLa , Humanos , Íntrons , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Especificidade de Órgãos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Am J Obstet Gynecol ; 212(1): 79.e1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447960

RESUMO

OBJECTIVE: We sought to determine the ability of single-nucleotide polymorphism-based noninvasive prenatal testing (NIPT) to identify triploid, unrecognized twin, and vanishing twin pregnancies. STUDY DESIGN: The study included 30,795 consecutive reported clinical cases received for NIPT for fetal whole-chromosome aneuploidies; known multiple gestations were excluded. Cell-free DNA was isolated from maternal blood samples, amplified via 19,488-plex polymerase chain reaction, and sequenced. Sequencing results were analyzed to determine fetal chromosome copy number and to identify the presence of additional fetal haplotypes. RESULTS: Additional fetal haplotypes, indicative of fetal triploidy, vanishing twin, or undetected twin pregnancy, were identified in 130 (0.42%) cases. Clinical confirmation (karyotype for singleton pregnancies, ultrasound for multifetal pregnancies) was available for 58.5% (76/130) of cases. Of the 76 cases with confirmation, 42.1% were vanishing twin, 48.7% were viable twin, 5.3% were diandric triploids, and 3.9% were nontriploid pregnancies that lacked evidence of co-twin demise. One pregnancy had other indications suggesting triploidy but lacked karyotype confirmation. Of the 5 vanishing twin cases with a known date of demise, 100% of losses occurred in the first trimester; up to 8 weeks elapsed between loss and detection by NIPT. CONCLUSION: This single-nucleotide polymorphism-based NIPT successfully identified vanished twin, previously unrecognized twin, and triploid pregnancies. As vanishing twins are more likely to be aneuploid, and undetected residual cell-free DNA could bias NIPT results, the ability of this method to identify additional fetal haplotypes is expected to result in fewer false-positive calls and prevent incorrect fetal sex calls.


Assuntos
Reabsorção do Feto/diagnóstico , Reabsorção do Feto/genética , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/genética , Polimorfismo de Nucleotídeo Único , Gravidez de Gêmeos/genética , Diagnóstico Pré-Natal/métodos , Triploidia , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
4.
Am J Obstet Gynecol ; 212(3): 332.e1-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479548

RESUMO

OBJECTIVE: The purpose of this study was to estimate the performance of a single-nucleotide polymorphism (SNP)-based noninvasive prenatal test for 5 microdeletion syndromes. STUDY DESIGN: Four hundred sixty-nine samples (358 plasma samples from pregnant women, 111 artificial plasma mixtures) were amplified with the use of a massively multiplexed polymerase chain reaction, sequenced, and analyzed with the use of the Next-generation Aneuploidy Test Using SNPs algorithm for the presence or absence of deletions of 22q11.2, 1p36, distal 5p, and the Prader-Willi/Angelman region. RESULTS: Detection rates were 97.8% for a 22q11.2 deletion (45/46) and 100% for Prader-Willi (15/15), Angelman (21/21), 1p36 deletion (1/1), and cri-du-chat syndromes (24/24). False-positive rates were 0.76% for 22q11.2 deletion syndrome (3/397) and 0.24% for cri-du-chat syndrome (1/419). No false positives occurred for Prader-Willi (0/428), Angelman (0/442), or 1p36 deletion syndromes (0/422). CONCLUSION: SNP-based noninvasive prenatal microdeletion screening is highly accurate. Because clinically relevant microdeletions and duplications occur in >1% of pregnancies, regardless of maternal age, noninvasive screening for the general pregnant population should be considered.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Testes para Triagem do Soro Materno , Polimorfismo de Nucleotídeo Único , Algoritmos , Transtornos Cromossômicos/genética , Reações Falso-Positivas , Feminino , Humanos , Reação em Cadeia da Polimerase Multiplex , Valor Preditivo dos Testes , Gravidez , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Síndrome
5.
Am J Obstet Gynecol ; 211(5): 527.e1-527.e17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25111587

RESUMO

OBJECTIVE: We sought to report on laboratory and clinical experience following 6 months of clinical implementation of a single-nucleotide polymorphism-based noninvasive prenatal aneuploidy test in high- and low-risk women. STUDY DESIGN: All samples received from March through September 2013 and drawn ≥9 weeks' gestation were included. Samples that passed quality control were analyzed for trisomy 21, trisomy 18, trisomy 13, and monosomy X. Results were reported as high or low risk for fetal aneuploidy for each interrogated chromosome. Relationships between fetal fraction and gestational age and maternal weight were analyzed. Follow-up on outcome was sought for a subset of high-risk cases. False-negative results were reported voluntarily by providers. Positive predictive value (PPV) was calculated from cases with an available prenatal or postnatal karyotype or clinical evaluation at birth. RESULTS: Samples were received from 31,030 patients, 30,705 met study criteria, and 28,739 passed quality-control metrics and received a report detailing aneuploidy risk. Fetal fraction correlated positively with gestational age, and negatively with maternal weight. In all, 507 patients received a high-risk result for any of the 4 tested conditions (324 trisomy 21, 82 trisomy 18, 41 trisomy 13, 61 monosomy X; including 1 double aneuploidy case). Within the 17,885 cases included in follow-up analysis, 356 were high risk, and outcome information revealed 184 (51.7%) true positives, 38 (10.7%) false positives, 19 (5.3%) with ultrasound findings suggestive of aneuploidy, 36 (10.1%) spontaneous abortions without karyotype confirmation, 22 (6.2%) terminations without karyotype confirmation, and 57 (16.0%) lost to follow-up. This yielded an 82.9% PPV for all aneuploidies, and a 90.9% PPV for trisomy 21. The overall PPV for women aged ≥35 years was similar to the PPV for women aged <35 years. Two patients were reported as false negatives. CONCLUSION: The data from this large-scale report on clinical application of a commercially available noninvasive prenatal test suggest that the clinical performance of this single-nucleotide polymorphism-based noninvasive prenatal test in a mixed high- and low-risk population is consistent with performance in validation studies.


Assuntos
Transtornos Cromossômicos/diagnóstico , DNA/genética , Síndrome de Down/diagnóstico , Trissomia/diagnóstico , Síndrome de Turner/diagnóstico , Adolescente , Adulto , Aneuploidia , Peso Corporal , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , DNA/sangue , Síndrome de Down/genética , Feminino , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Gravidez , Diagnóstico Pré-Natal , Estudos Retrospectivos , Trissomia/genética , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18 , Síndrome de Turner/genética , Adulto Jovem
6.
Prenat Diagn ; 33(7): 643-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712453

RESUMO

OBJECTIVE: This study aimed to develop a single-nucleotide polymorphism-based and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. METHODS: Sixteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. RESULTS: Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all but one of the 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. CONCLUSION: This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cell-free DNA isolated from maternal plasma with high calculated accuracies and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies.


Assuntos
Aneuploidia , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único/genética , Diagnóstico Pré-Natal/métodos , Aberrações dos Cromossomos Sexuais , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , DNA/sangue , Feminino , Idade Gestacional , Humanos , Masculino , Monossomia , Gravidez , Sensibilidade e Especificidade , Trissomia
7.
Nat Med ; 25(12): 1928-1937, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768066

RESUMO

Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA (cfDNA) requires understanding of the various biological compartments contributing to the cfDNA pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA and matched white blood cell DNA covering a large genomic region (508 genes; 2 megabases; >60,000× raw depth) in a prospective study of 124 patients with metastatic cancer, with contemporaneous matched tumor tissue biopsies, and 47 controls without cancer. The assay displayed high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and inference of tumor mutational burden, microsatellite instability, mutational signatures and sources of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in controls and 53.2% in patients with cancer) had features consistent with clonal hematopoiesis. This cfDNA sequencing approach revealed that clonal hematopoiesis constitutes a pervasive biological phenomenon, emphasizing the importance of matched cfDNA-white blood cell sequencing for accurate variant interpretation.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Genômica , Neoplasias/sangue , Adulto , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , Análise Mutacional de DNA , DNA de Neoplasias/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Neoplasias/genética , Neoplasias/patologia
8.
Nucleic Acids Res ; 34(19): 5594-602, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17028101

RESUMO

Kinetoplastid mRNAs possess a unique hypermethylated cap 4 structure derived from the standard m7GpppN cap structure, with 2'-O methylations on the first four ribose sugars and additional base methylations on the first adenine and the fourth uracil. While the enzymes responsible for m7GpppN cap 0 formations has been characterized in Trypanosoma brucei, the mechanism of cap 4 methylation and the role of the hypermethylated structure remain unclear. Here, we describe the characterization of a 48 kDa T.brucei 2'-O nucleoside methyltransferase (TbCom1). Recombinant TbCom1 transfers the methyl group from S-adenosylmethionine (AdoMet) to the 2'-OH of the second nucleoside of m7GpppNpNp-RNA to form m7GpppNpNmp-RNA. TbCom1 is also capable of converting cap 1 RNA to cap 2 RNA. The methyl transfer reaction is dependent on the m7GpppN cap, as the enzyme does not form a stable interaction with GpppN-terminated RNA. Mutational analysis establishes that the TbCom1 and vaccinia virus VP39 methyltransferases share mechanistic similarities in AdoMet- and cap-recognition. Two aromatic residues, Tyr18 and Tyr187, may participate in base-stacking interactions with the guanine ring of the cap, as the removal of each of these aromatic side-chains abolishes cap-specific RNA-binding.


Assuntos
Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Capuzes de RNA/metabolismo , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Análise Mutacional de DNA , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Capuzes de RNA/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Alinhamento de Sequência
9.
Mol Biol Cell ; 15(2): 774-86, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14657238

RESUMO

We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell.


Assuntos
Núcleo Celular/metabolismo , Genes src/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular/fisiologia , Clonagem Molecular , Éxons/genética , Genes src/fisiologia , Células HeLa , Humanos , Camundongos , Neuroblastoma/metabolismo , Células Tumorais Cultivadas
10.
PLoS One ; 11(8): e0161045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27512996

RESUMO

BACKGROUND: X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. METHODS: This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal age). RESULTS: From 141,916 women and 29,336 men, 119 X&Y chromosomal abnormalities (prevalence: 1 in 1,439) were identified. Maternal findings include: 43 cases of 45,X (40 mosaic); 30 cases of 47,XXX (12 mosaic); 3 cases of 46,XX uniparental disomy; 2 cases of 46,XY/46,XX; 23 cases of mosaicism of unknown type; 2 cases of 47,XX,i(X)(q10). Paternal findings include: 2 cases of 47,XXY (1 mosaic); 10 cases of 47,XYY (1 mosaic); 4 partial Y deletions. CONCLUSIONS: Single chromosome aneuploidy was present in one of every 1,439 individuals considered in this study, showing 47,XXX; 47,XX,i(X)(q10); 47,XYY; 47,XXY, partial Y deletions, and a high level of mosaicism for 45,X. This expands significantly our understanding of X&Y chromosomal variations and fertility issues, and is critical for families and adults affected by these disorders. This current and extensive information on fertility will be beneficial for genetic counseling on prenatal diagnoses as well as for newly diagnosed postnatal cases.


Assuntos
Aneuploidia , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Aberrações dos Cromossomos Sexuais/estatística & dados numéricos , Adulto , Criança , Feminino , Genótipo , Humanos , Incidência , Masculino , Idade Materna , Mosaicismo , Gravidez , Diagnóstico Pré-Natal , Estudos Prospectivos , Estudos Retrospectivos , Estados Unidos/epidemiologia
11.
Obstet Gynecol ; 124(2 Pt 1): 202-209, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25004334

RESUMO

OBJECTIVE: To report the full cohort of identifiable anomalies, regardless of known clinical significance, in a large-scale cohort of postmiscarriage products-of-conception samples analyzed using a high-resolution single-nucleotide polymorphism (SNP)-based microarray platform. High-resolution chromosomal microarray analysis allows for the identification of visible and submicroscopic cytogenomic imbalances; the specific use of SNPs permits detection of maternal cell contamination, triploidy, and uniparental disomy. METHODS: Miscarriage specimens were sent to a single laboratory for cytogenomic analysis. Chromosomal microarray analysis was performed using a SNP-based genotyping microarray platform. Results were evaluated at the cytogenetic and microscopic (greater than 10 Mb) and submicroscopic (less than 10 Mb) levels. Maternal cell contamination was assessed using information derived from fetal and maternal SNPs. RESULTS: Results were obtained on 2,389 of 2,392 specimens (99.9%) that were less than 20 weeks of gestation. Maternal cell contamination was identified in 528 (22.0%) specimens. The remaining 1,861 specimens were considered to be of true fetal origin. Of these, 1,106 (59.4%) showed classical cytogenetic abnormalities: aneuploidy accounted for 945 (85.4%), triploidy for 114 (10.3%), and structural anomalies or tetraploidy for the remaining 47 (4.2%). Of the 755 (40.6%) cases considered normal at the cytogenetic level, SNP chromosomal microarray analysis revealed a clinically significant copy number change or whole-genome uniparental disomy in 12 (1.6%) and three (0.4%) cases, respectively. CONCLUSION: Chromosomal microarray analysis of products-of-conception specimens yields a high diagnostic return. Using SNPs extends the scope of detectable genomic abnormalities and facilitates reporting "true" fetal results. This supports the use of SNP chromosomal microarray analysis for cytogenomic evaluation of miscarriage specimens when clinically indicated. LEVEL OF EVIDENCE: III.


Assuntos
Feto Abortado , Aborto Espontâneo/genética , Aberrações Cromossômicas , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Aneuploidia , Feminino , Técnicas de Genotipagem , Humanos , Pessoa de Meia-Idade , Gravidez , Tetraploidia , Triploidia , Dissomia Uniparental , Adulto Jovem
12.
PLoS One ; 9(5): e96677, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24805989

RESUMO

PURPOSE: To determine how a single nucleotide polymorphism (SNP)- and informatics-based non-invasive prenatal aneuploidy test performs in detecting trisomy 13. METHODS: Seventeen trisomy 13 and 51 age-matched euploid samples, randomly selected from a larger cohort, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that interrogated 19,488 SNPs covering chromosomes 13, 18, 21, X, and Y, and sequenced. Analysis and copy number identification involved a Bayesian-based maximum likelihood statistical method that generated chromosome- and sample-specific calculated accuracies. RESULTS: Of the samples that passed a stringent DNA quality threshold (94.1%), the algorithm correctly identified 15/15 trisomy 13 and 49/49 euploid samples, for 320/320 correct copy number calls. CONCLUSIONS: This informatics- and SNP-based method accurately detects trisomy 13-affected fetuses non-invasively and with high calculated accuracy.


Assuntos
Transtornos Cromossômicos/diagnóstico , Cromossomos Humanos Par 13 , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Algoritmos , Estudos de Casos e Controles , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 13/genética , Biologia Computacional , Feminino , Humanos , Gravidez , Trissomia/genética , Síndrome da Trissomia do Cromossomo 13
13.
Obstet Gynecol ; 124(2 Pt 1): 210-218, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25004354

RESUMO

OBJECTIVE: To estimate performance of a single-nucleotide polymorphism-based noninvasive prenatal screen for fetal aneuploidy in high-risk and low-risk populations on single venopuncture. METHODS: One thousand sixty-four maternal blood samples from 7 weeks of gestation and beyond were included; 1,051 were within specifications and 518 (49.3%) were low risk. Cell-free DNA was amplified, sequenced, and analyzed using the Next-generation Aneuploidy Test Using SNPs algorithm. Samples were called as trisomies 21, 18, 13, or monosomy X, or euploid, and male or female. RESULTS: Nine hundred sixty-six samples (91.9%) successfully generated a cell-free DNA result. Among these, sensitivity was 100% for trisomy 21 (58/58, confidence interval [CI] 93.8-100%), trisomy 13 (12/12, CI 73.5-100%), and fetal sex (358/358 female, CI 99.0-100%; 418/418 male, CI 99.1-100%), 96.0% for trisomy 18 (24/25, CI 79.7-99.9%), and 90% for monosomy X (9/10, CI 55.5-99.8%). Specificity for trisomies 21 and 13 was 100% (905/905, CI 99.6-100%; and 953/953, CI 99.6-100%, respectively) and for trisomy 18 and monosomy X was 99.9% (938/939, CI 99.4-100%; and 953/954, CI 99.4-100%, respectively). However, 16% (20/125) of aneuploid samples did not return a result; 50% (10/20) had a fetal fraction below the 1.5th percentile of euploid pregnancies. Aneuploidy rate was significantly higher in these samples (P<.001, odds ratio 9.2, CI 4.4-19.0). Sensitivity and specificity did not differ in low-risk and high-risk populations. CONCLUSIONS: This noninvasive prenatal screen performed with high sensitivity and specificity in high-risk and low-risk cohorts. Aneuploid samples were significantly more likely to not return a result; the number of aneuploidy samples was especially increased among samples with low fetal fraction. This underscores the importance of redraws or, in rare cases, invasive procedures based on low fetal fraction. LEVEL OF EVIDENCE: II.


Assuntos
Aneuploidia , Transtornos Cromossômicos/diagnóstico , DNA/sangue , Síndrome de Down/diagnóstico , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Síndrome de Turner/diagnóstico , Adolescente , Adulto , Algoritmos , Sistema Livre de Células , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 18 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Sensibilidade e Especificidade , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18 , Adulto Jovem
14.
Nat Struct Mol Biol ; 17(2): 187-93, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20098426

RESUMO

The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUG(exp) RNA). To test whether CUG(exp) RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTG(exp) transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for approximately 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUG(exp) RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUG(exp) RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUG(exp) RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/deficiência , Proteínas da Matriz Extracelular/biossíntese , Expressão Gênica , Distrofia Miotônica/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Modelos Animais de Doenças , Camundongos , Modelos Biológicos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA
15.
J Biol Chem ; 282(22): 15995-6005, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17416901

RESUMO

The 5' end of kinetoplastid mRNA possesses a hypermethylated cap 4 structure, which is derived from standard m7GpppN (cap 0) with additional methylations at seven sites within the first four nucleosides on the spliced leader RNA. In addition to TbCe1 guanylyltransferase and TbCmt1 (guanine N-7) methyltransferase, Trypanosoma brucei encodes a second cap 0 forming enzyme. TbCgm1 (T. brucei cap guanylyltransferase-methyltransferase) is a novel bifunctional capping enzyme consisting of an amino-terminal guanylyltransferase domain and a carboxyl-terminal methyltransferase domain. Recombinant TbCgm1 transfers the GMP to spliced leader RNA (SL RNA) via a covalent enzyme-GMP intermediate, and methylates the guanine N-7 position of the GpppN-terminated RNA to form cap 0 structure. The two domains can function autonomously in vitro. TbCGM1 is essential for parasite growth. Silencing of TbCGM1 by RNA interference increased the abundance of uncapped SL RNA and lead to accumulation of hypomethylated SL RNA. In contrast, silencing of TbCE1 and TbCMT1 did not affect parasite growth or SL RNA capping. We conclude that TbCgm1 specifically cap SL RNA, and cap 0 is a prerequisite for subsequent methylation events leading to the formation of mature SL RNA.


Assuntos
Guanosina Monofosfato/metabolismo , Metiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Capuzes de RNA/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Inativação Gênica , Guanosina Monofosfato/genética , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Proteínas de Protozoários/genética , Capuzes de RNA/genética , Splicing de RNA/fisiologia , RNA de Protozoário/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/genética
16.
RNA ; 12(3): 488-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16431985

RESUMO

The m7GpppN cap structure of eukaryotic mRNA is formed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. In trypanosomatid protozoa, the m7GpppN is further modified by seven methylation steps within the first four transcribed nucleosides to form the cap 4 structure. The RNA triphosphatase and guanylyltransferase components have been characterized in Trypanosoma brucei. Here we describe the identification and characterization of a T. brucei (guanine N-7) methyltransferase (TbCmt1). Sequence alignment of the 324-amino acid TbCmt1 with the corresponding enzymes from human (Hcm1), fungal (Abd1), and microsporidian (Ecm1) revealed the presence of conserved residues known to be essential for methyltransferase activity. Purified recombinant TbCmt1 catalyzes the transfer of a methyl group from S-adenosylmethionine to the N-7 position of the cap guanine in GpppN-terminated RNA to form the m7GpppN cap. TbCmt1 also methylates GpppG and GpppA but not GTP or dGTP. Mutational analysis of individual residues of TbCmt1 that were predicted-on the basis of the crystal structure of Ecm1--to be located at or near the active site identified six conserved residues in the putative AdoMet- or cap-binding pocket that caused significant reductions in TbCmt1 methyltransferase activity. We also report the identification of a second T. brucei RNA (guanine N-7) cap methyltransferase (named TbCgm1). The 1050-amino acid TbCgm1 consists of a C-terminal (guanine N-7) methyltransferase domain, which is homologous with TbCmt1, and an N-terminal guanylyltransferase domain, which contains signature motifs found in the nucleotidyl transferase superfamily.


Assuntos
Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico/genética , Sequência Conservada , Cinética , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Capuzes de RNA/genética , RNA de Protozoário/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA