RESUMO
Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.
Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Adulto , Fragmentos Fc das Imunoglobulinas/imunologia , Merozoítos/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Feminino , Masculino , Adulto JovemRESUMO
BACKGROUND: Pneumococcal conjugate vaccines are an expensive component of the routine immunization schedule. Fractional-dose regimens may be one option to increase the sustainability of the vaccine program. METHODS: We assessed whether the immunogenicity of fractional doses of the 10-valent and 13-valent pneumococcal conjugate vaccines (PCV10 [GSK] and PCV13 [Pfizer], respectively) would be noninferior to that of the full doses and analyzed the prevalence of vaccine-serotype carriage. We randomly assigned healthy infants in Kenya to one of seven equal-sized trial groups. Participants in groups A through F were assigned to receive either a fractional or full dose of PCV10 or PCV13, administered as two primary doses plus one booster dose. In group A, participants received a full dose of PCV13; group B, a 40% dose of PCV13; group C, a 20% dose of PCV13; group D, a full dose of PCV10; group E, a 40% dose of PCV10; and group F, a 20% dose of PCV10. Participants in the seventh group (group G) received a full dose of PCV10 as three primary doses without a booster. Immunogenicity was assessed 4 weeks after the primary series of doses and 4 weeks after the booster dose. Noninferiority could be declared 4 weeks after the primary series if the difference in the percentage of participants with a threshold response was not more than 10% and 4 weeks after administration of the booster if the ratio of the geometric mean concentration (GMC) of IgG was more than 0.5. A vaccine dose was prespecified as noninferior if it met the noninferiority criterion for at least 8 of the 10 vaccine types in the PCV10 groups or at least 10 of the 13 vaccine types in the PCV13 groups. Carriage was assessed when participants were 9 months and 18 months of age. RESULTS: In the per-protocol analysis, 40% of a full dose of PCV13 met the noninferiority criterion for 12 of 13 serotypes after the primary series and for 13 of 13 serotypes after the booster. The immunogenicity of the 20% dose of PCV13 and of the 40% and 20% doses of PCV10 was not noninferior to that of the full doses. Vaccine serotype-type carriage prevalence was similar across the PCV13 groups at 9 months and 18 months of age. CONCLUSIONS: In a three-dose schedule (two primary doses and a booster), 40% doses of PCV13 were noninferior to full doses for all included serotypes. Lower doses of PCV13 and PCV10 did not meet the criteria for noninferiority. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT03489018; Pan African Clinical Trial Registry number, PACTR202104717648755.).
RESUMO
BACKGROUND: Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS: We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 µg R21 plus 50 µg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS: From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION: R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING: The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.
Assuntos
Vacinas Antimaláricas , Malária , Nanopartículas , Saponinas , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anticorpos Antivirais , Burkina Faso , Método Duplo-Cego , Imunização , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversosRESUMO
BACKGROUND: Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS: We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS: In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Malária Cerebral , Meningites Bacterianas , Doenças do Sistema Nervoso , Adolescente , Animais , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Criança , Estudos de Coortes , Coma , Humanos , Incidência , Quênia/epidemiologia , Doenças do Sistema Nervoso/epidemiologiaRESUMO
BACKGROUND: Stocks of yellow fever vaccine are insufficient to cover exceptional demands for outbreak response. Fractional dosing has shown efficacy, but evidence is limited to the 17DD substrain vaccine. We assessed the immunogenicity and safety of one-fifth fractional dose compared with standard dose of four WHO-prequalified yellow fever vaccines produced from three substrains. METHODS: We did this randomised, double-blind, non-inferiority trial at research centres in Mbarara, Uganda, and Kilifi, Kenya. Eligible participants were aged 18-59 years, had no contraindications for vaccination, were not pregnant or lactating, had no history of yellow fever vaccination or infection, and did not require yellow fever vaccination for travel. Eligible participants were recruited from communities and randomly assigned to one of eight groups, corresponding to the four vaccines at standard or fractional dose. The vaccine was administered subcutaneously by nurses who were not masked to treatment, but participants and other study personnel were masked to vaccine allocation. The primary outcome was proportion of participants with seroconversion 28 days after vaccination. Seroconversion was defined as post-vaccination neutralising antibody titres at least 4 times pre-vaccination measurement measured by 50% plaque reduction neutralisation test (PRNT50). We defined non-inferiority as less than 10% decrease in seroconversion in fractional compared with standard dose groups 28 days after vaccination. The primary outcome was measured in the per-protocol population, and safety analyses included all vaccinated participants. This trial is registered with ClinicalTrials.gov, NCT02991495. FINDINGS: Between Nov 6, 2017, and Feb 21, 2018, 1029 participants were assessed for inclusion. 69 people were ineligible, and 960 participants were enrolled and randomly assigned to vaccine manufacturer and dose (120 to Bio-Manguinhos-Fiocruz standard dose, 120 to Bio-Manguinhos-Fiocruz fractional dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides standard dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides fractional dose, 120 to Institut Pasteur Dakar standard dose, 120 to Institut Pasteur Dakar fractional dose, 120 to Sanofi Pasteur standard dose, and 120 to Sanofi Pasteur fractional dose). 49 participants had detectable PRNT50 at baseline and 11 had missing PRNT50 results at baseline or 28 days. 900 were included in the per-protocol analysis. 959 participants were included in the safety analysis. The absolute difference in seroconversion between fractional and standard doses by vaccine was 1·71% (95% CI -2·60 to 5·28) for Bio-Manguinhos-Fiocruz, -0·90% (-4·24 to 3·13) for Chumakov Institute of Poliomyelitis and Viral Encephalitides, 1·82% (-2·75 to 5·39) for Institut Pasteur Dakar, and 0·0% (-3·32 to 3·29) for Sanofi Pasteur. Fractional doses from all four vaccines met the non-inferiority criterion. The most common treatment-related adverse events were headache (22·2%), fatigue (13·7%), myalgia (13·3%) and self-reported fever (9·0%). There were no study-vaccine related serious adverse events. INTERPRETATION: Fractional doses of all WHO-prequalified yellow fever vaccines were non-inferior to the standard dose in inducing seroconversion 28 days after vaccination, with no major safety concerns. These results support the use of fractional dosage in the general adult population for outbreak response in situations of vaccine shortage. FUNDING: The study was funded by Médecins Sans Frontières Foundation, Wellcome Trust (grant no. 092654), and the UK Department for International Development. Vaccines were donated in kind.
Assuntos
Uso Off-Label , Vacina contra Febre Amarela/administração & dosagem , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Método Duplo-Cego , Feminino , Humanos , Quênia , Masculino , Soroconversão , Uganda , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/imunologiaRESUMO
BACKGROUND: Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure. METHODS: We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity. RESULTS: Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability. CONCLUSIONS: The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria. Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Animais , Formação de Anticorpos , Criança , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , EsquizontesRESUMO
Controlled human malaria infection (CHMI) studies involve the deliberate infection of healthy volunteers with malaria parasites under controlled conditions to study immune responses and/or test drug or vaccine efficacy. An empirical ethics study was embedded in a CHMI study at a Kenyan research programme to explore stakeholders' perceptions and experiences of deliberate infection and moral implications of these. Data for this qualitative study were collected through focus group discussions, in-depth interviews and non-participant observation. Sixty-nine participants were involved, including CHMI study volunteers, community representatives and research staff. Data were managed using QSR Nvivo 10 and analysed using an inductive-deductive approach, guided by ethics literature. CHMI volunteers had reasonable understanding of the study procedures. Decisions to join were influenced by study incentives, trust in the research institution, their assessment of associated burdens and motivation to support malaria vaccine development. However, deliberate malaria infection was a highly unusual research strategy for volunteers, community representatives and some study staff. Volunteers' experiences of physical, emotional and social burdens or harms were often greater than anticipated initially, and fluctuated over time, related to specific procedures and events. Although unlikely to deter volunteers' participation in similar studies in furture, we argue that the dissonance between level of understanding of the burdens involved and actual experiences are morally relevant in relation to community engagement, informed consent processes, and ongoing support for volunteers and research staff. We further argue that ethics oversight of CHMI studies should take account of these issues in deciding whether consent, engagement and the balance of benefits and harms are reasonable in a given context.
Assuntos
Malária , Parasitos , Animais , Voluntários Saudáveis , Humanos , Quênia , Malária/prevenção & controle , PercepçãoRESUMO
BACKGROUND: Many parts of Africa have witnessed reductions in Plasmodium falciparum transmission over the last 15 years. Since immunity to malaria is acquired more rapidly at higher transmission, the slower acquisition of immunity at lower transmission may partially offset the benefits of reductions in transmission. We examined the clinical spectrum of disease and predictors of mortality after sustained changes in transmission intensity, using data collected from 1989 to 2016. METHODS: We conducted a temporal observational analysis of 18,000 children, aged 14 days to 14 years old, who were admitted to Kilifi County Hospital, Kenya, from 1989 to 2016 with malaria. We describe the trends over time of the clinical and laboratory criteria for severe malaria and associated risk of mortality. RESULTS: During the time periods 1989-2003, 2004-2008, and 2009-2016, Kilifi County Hospital admitted averages of 657, 310, and 174 cases of severe malaria per year including averages of 48, 14, and 12 malaria-associated deaths per year, respectively. The median ages in years of children admitted with cerebral malaria, severe anaemia, and malaria-associated mortality were 3.0 (95% confidence interval (CI) 2.2-3.9), 1.1 (95% CI 0.9-1.4), and 1.1 (95% CI 0.3-2.2) in the year 1989, rising to 4.9 (95% CI 3.9-5.9), 3.8 (95% CI 2.5-7.1), and 5 (95% CI 3.3-6.3) in the year 2016. The ratio of children with cerebral malaria to severe anaemia rose from 1:2 before 2004 to 3:2 after 2009. Hyperparasitaemia was a risk factor for death after 2009 but not in earlier time periods. CONCLUSION: Despite the evidence of slower acquisition of immunity, continued reductions in the numbers of cases of severe malaria resulted in lower overall mortality. Our temporal data are limited to a single site, albeit potentially applicable to a secular trend present in many parts of Africa.
Assuntos
Malária Cerebral/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Quênia/epidemiologia , Malária Cerebral/patologia , Malária Falciparum/epidemiologia , Masculino , Estudos Observacionais como Assunto , Estudos Prospectivos , Fatores de RiscoRESUMO
Background: African children with cerebral malaria and seizures caused Plasmodium falciparum are at greater risk of poor outcomes including death and neurological sequelae. The agonal events are severe hypoventilation and respiratory arrest often triggered by seizures. We hypothesised that prophylactic anti-seizure medication (ASM) could avert 'spikes' of intracranial pressure during or following seizures and that adequate ventilation could be supported by biphasic Cuirass Ventilation (BCV) which requires no intubation. Methods: A Phase I trial conducted in Kilifi, Kenya designed to provide data on safety, feasibility and preliminary data on seizure control using prophylactic ASM (levetiracetam) and BCV as non-invasive ventilatory support in children with cerebral malaria. Children aged 3 months to 12-years hospitalised with P falciparum malaria (positive rapid diagnostic test or a malaria slide), a Blantyre Coma Score ≤2 and a history of acute seizures in this illness are eligible for the trial. In a phased evaluation we will study i) BCV alone for respiratory support (n=10); ii) prophylactic LVT: 40mg/kg loading dose then 30mg/kg every 12 hours given via nasogastric tube for 72 hours (or until fully conscious) plus BCV support (n=10) and; iii) prophylactic LVT: 60mg/kg loading dose then 45mg/kg every 12 hours given via nasogastric tube for 72 hours (or until fully conscious) plus BCV support (n=10). Primary outcome measure: cumulative time with a clinically detected seizures or number of observed seizures over 36 hours. Secondary outcomes will be assessed by feasibility or ability to implement BCV, and recovery from coma within 36 hours. Safety endpoints include: aspiration during admission; death at 28 days and 180 days; and de-novo neurological impairments at 180 days. Conclusions: This is a Phase I trial largely designed to test the feasibility, tolerability and safety of using non-invasive ventilatory support and LVT prophylaxis in cerebral malaria. Registration: ISRCTN76942974 (5.02.2019); PACTR202112749708968 (20.12.2021).
Unfortunately, children with cerebral malaria continue to have very poor outcomes including severe hypoventilation and respiratory arrest (i.e. breathing is too slow or stops) during hospitalization which is often triggered by seizures. We will explore the potential benefits of a special type of ventilation that applies suction or negative pressure to the chest (meaning keeping children breathing by pushing air in and out of their lungs) in combination with anticonvulsants given before children have had any fits We will use a device called biphasic Cuirass Ventilation (BCV) that can be used by non-specialists to help children breath. BCV applies both negative and positive pressure to the chest, covering both inspiration (breathing in) and expiration (breathing out) phases of breathing, which is more appropriate for periods of when the breathing is too slow or stops for a period of time. We will also use an anticonvulsant drug, called levetiracetam to prevent seizures. It has been safely used in Malawian children and shown to improve outcomes. This will be given directly into the stomach via a nasogastric tube (tubes down the nose into the stomach) The study will be carried out at Kilifi County Hospital, Kenya and plans to enrol 30 children aged 3 months to 12 years with cerebral malaria and a positive malaria test The first ten children with have the BCV device only to assist respiration until they recover from their coma. The next twenty children in the trial will have the BCV device in addition with anticonvulsants given before children have had any fits as a preventive strategy to stop fits. All children will have regular monitoring during the period of coma/ventilation and will be followed up on days 28 and 180. The study aims to generate feasibility and safety data to support future trials.
RESUMO
Background: Severe pneumonia in African children results in poor long-term outcomes (deaths/readmissions) with undernutrition as a key risk factor. We hypothesised additional energy/protein-rich Ready-to-Use Therapeutic Foods (RUTF) would meet additional nutritional requirements and improve outcomes. Methods: COAST-Nutrition was an open-label Phase 2 randomised controlled trial in children (aged 6 months-12 years) hospitalised with severe pneumonia (and hypoxaemia, SpO2 <92%) in Mbale, Soroti, Jinja, Masaka Regional Referral Hospitals, Uganda and Kilifi County Hospital, Kenya (ISRCTN10829073 (registered 6th June 2018) PACTR202106635355751 (registered 2nd June 2021)). Children were randomised (ratio 1:1) to enhanced nutritional supplementation with RUTF (plus usual diet) for 56 days vs usual diet (control). The primary outcome was change in mid-upper arm circumference (MUAC) at 90 days as a composite with mortality. Secondary outcomes include anthropometric status, mortality, and readmissions at Days 28, 90 and 180. Findings: Between 12 August 2018 and 22 April 2022, 846 eligible children were randomised, 424 to RUTF and 422 to usual diet, and followed for 180-days [12 (1%) lost-to-follow-up]. RUTF supplement was initiated in 417/419 (>99%). By Day 90, there was no significant difference in the composite endpoint (probabilistic index 0.49, 95% CI 0.45-0.53, p = 0.74). Respective 90-day mortality (13/420 3.1% vs 14/421 3.3%) and MUAC increment (0.54 (SD 0.85) vs 0.55 (SD 0.81)) were similar between arms. There was no difference in any anthropometric secondary endpoints to Day 28, 90 or 180 except skinfold thickness at Day 28 and Day 90 was greater in the RUTF arm. Serious adverse events were higher in the RUTF arm (n = 164 vs 108), mainly due to hospital readmission for acute illness (54/387 (14%) vs 37/375 (10%). Interpretation: Our study suggested that nutritional supplementation with RUTF did not improve outcomes to 180 days in children with severe pneumonia. Funding: This trial is part of the EDCTP2 programme (grant number RIA-2016S-1636-COAST-Nutrition) supported by the European Union, and UK Joint Global Health Trials scheme: Medical Research Council, Department for International Development, Wellcome Trust (grant number MR/L004364/1, UK).
RESUMO
BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181â825 (range 38â815-333â491) clinical cases per 100â000 fully vaccinated children in perennial settings and 202â017 (29â868-405â702) clinical cases per 100â000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.
Assuntos
Análise Custo-Benefício , Vacinas Antimaláricas , Malária Falciparum , Modelos Teóricos , Saúde Pública , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/economia , Burkina Faso/epidemiologia , Pré-Escolar , Saúde Pública/economia , Plasmodium falciparum/imunologia , Criança , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Lactente , Masculino , FemininoRESUMO
The Vi capsular polysaccharide (ViPS) protects Salmonella enterica subspecies enterica serotype Typhi (S.Typhi) in vivo by multiple mechanisms. Recent microbiological reports from typhoid endemic countries suggest that acapsulate S.Typhi may occur in nature and contribute to clinical typhoid fever that is indistinguishable from disease caused by capsulate strains. The prevalence and genetic basis of ViPS-negative S.Typhi isolates in children from Kathmandu, Nepal, were tested in 68 isolates. Although 5.9% of isolates tested negative for capsular expression by slide agglutination tests, a novel multiplex PCR assay and individual PCR analyses demonstrated the presence of all 14 genes responsible for the synthesis, transportation and regulation of the ViPS. These data suggest that phenotypically acapsulate S.Typhi may not have a genetic basis for the same.
Assuntos
Genes Bacterianos , Salmonella typhi/genética , Salmonella typhi/isolamento & purificação , Febre Tifoide/epidemiologia , Criança , Genoma Bacteriano , Humanos , Lactente , Mutação , Nepal/epidemiologia , Fenótipo , Reação em Cadeia da Polimerase , Polissacarídeos Bacterianos/metabolismo , Prevalência , Salmonella typhi/imunologia , Febre Tifoide/sangue , Febre Tifoide/microbiologiaRESUMO
INTRODUCTION: Estimates suggest that one-third of snakebite cases in sub-Saharan Africa affect children. Despite children being at a greater risk of disability and death, there are limited published data. This study has determined the: population-incidence and mortality rate of hospital-attended paediatric snakebite; clinical syndromes of snakebite envenoming; and predictors of severe local tissue damage. METHODS: All children presenting to Kilifi County Hospital, Kenya with snakebite were identified through the Kilifi Health and Demographic Surveillance System (KHDSS). Cases were prospectively registered, admitted for at least 24-hours, and managed on a paediatric high dependency unit (HDU). Households within the KHDSS study area have been included in 4-monthly surveillance and verbal autopsy, enabling calculation of population-incidence and mortality. Predictors of severe local tissue damage were identified using a multivariate logistic regression analysis. RESULTS: Between 2003 and 2021, there were 19,606 admissions to the paediatric HDU, of which 584 were due to snakebite. Amongst young children (≤5-years age) the population-incidence of hospital-attended snakebite was 11.3/100,000 person-years; for children aged 6-12 years this was 29.1/100,000 person-years. Incidence remained consistent over the study period despite the population size increasing (98,967 person-years in 2006; and 153,453 person-years in 2021). Most cases had local envenoming alone, but there were five snakebite associated deaths. Low haemoglobin; raised white blood cell count; low serum sodium; high systolic blood pressure; and an upper limb bite-site were independently associated with the development of severe local tissue damage. CONCLUSION: There is a substantial burden of disease due to paediatric snakebite, and the annual number of cases has increased in-line with population growth. The mortality rate was low, which may reflect the species causing snakebite in this region. The identification of independent predictors of severe local tissue damage can help to inform future research to better understand the pathophysiology of this important complication.
Assuntos
Mordeduras de Serpentes , Criança , Humanos , Pré-Escolar , Mordeduras de Serpentes/epidemiologia , Quênia/epidemiologia , Estudos Longitudinais , Hospitais , HospitalizaçãoRESUMO
Chronic hepatitis B infection (CHB) is a significant problem worldwide with around 300 million people infected. Ambitious goals have been set towards its elimination as a public health threat by 2030. However, accurate seroprevalence estimates in many countries are lacking or fail to provide representative population estimates, particularly in the WHO African Region (AFRO). This means the full extent of HBV infection is not well described, leading to a lack of investment in diagnostics, treatment and disease prevention. Clinical trials in the WHO AFRO region have been increasing over time and many test for infectious diseases including hepatitis B virus (HBV) to determine baseline eligibility for participants, however these screening data are not reported. Here we review data from six clinical trials completed at the KEMRI-Wellcome Trust Research Programme between 2016 and 2023 that screened for HBV using hepatitis B surface antigen (HBsAg) as part of the trial exclusion criteria. 1727 people had HBsAg results available, of which 60 tested positive. We generated a crude period HBV prevalence estimate of 3.5% (95% CI 2.6-4.5%), and after standardisation for sex and age to account for the population structure of the Kilifi Health Demographics Surveillance System (KHDSS), the prevalence estimate increased to 5.0% (95% CI 3.4-6.6%). The underrepresentation of women in these trials was striking with 1263/1641 (77%) of participants being male. Alanine aminotransferase (ALT) was significantly higher in the HBsAg positive group but was not outside the normal range. We argue that routine collation and publishing of data from clinical trials could increase precision and geographical representation of global HBV prevalence estimates, enabling evidence-based provision of clinical care pathways and public health interventions to support progress towards global elimination targets. We do acknowledge when using clinical trials data for seroprevalence estimates, that local population structure data is necessary to allow standardisation of results, and the point of care tests used here are limited in sensitivity and specificity.
RESUMO
Background: Even on the best antimalarial treatments (injectable artesunate) African children with severe malaria have poor outcomes with most deaths occurring early in the course of hospital admission (<24hours). Lactic acidosis, largely due to impairment of the microcirculatory flow due to parasite sequestration, is a main risk factor for poor outcome. There are no adjuvant treatments for severe malaria that target this complication. Sevuparin, a heparin-like drug, binds to Plasmodium falciparum erythrocyte membrane protein blocking merozoite invasion, preventing cytoadherence and transiently de-sequestering infected erythrocytes. Leading to improved microcirculatory flow by reversing/preventing parasite sequestration. If given early during admission this could result in improvements in outcomes. Sevuparin has been shown to be safe and well tolerated in adults with only some mild transient effects on activated partial thromboplastin time (APTT) were reported, without clinical consequences. Methods: A Phase I trial designed to provide data on safety, dosing, feasibility of sevuparin as an adjuvant therapy in Kenya and Zambian children with severe malaria complicated by lactic acidosis (> 2mmol/l). Three intravenous doses will be given at admission (0 hours), 8 and 16 hours. APPT will be measured 1 hour after each dose (to assess maximum toxicity). Studying 20 children will allow sufficient data on safety to be generated across a range of doses to identify the maximum tolerated dose (MTD) using the Continual Reassessment Method, which adapts or informs subsequent doses for each child based on the data from previously enrolled children. The MTD will be identified based on the dose-toxicity model updated by each previous patient's APTT results using standard methods. Conclusions: The results of the Phase I trial will identify the final dose to be tested in a Phase II trial in terms of both efficacy and safety outcomes. Registration: PACTR number: 202007890194806 (date 20/07/2020) ISRCTN32271864 (date 28/07/2021).
RESUMO
Background: Snakebite clinical trials have often used heterogeneous outcome measures and there is an urgent need for standardisation. Method: A globally representative group of key stakeholders came together to reach consensus on a globally relevant set of core outcome measurements. Outcome domains and outcome measurement instruments were identified through searching the literature and a systematic review of snakebite clinical trials. Outcome domains were shortlisted by use of a questionnaire and consensus was reached among stakeholders and the patient group through facilitated discussions and voting. Results: Five universal core outcome measures should be included in all future snakebite clinical trials: mortality, WHO disability assessment scale, patient-specific functional scale, acute allergic reaction by Brown criteria, and serum sickness by formal criteria. Additional syndrome-specific core outcome measures should be used depending on the biting species. Conclusion: This core outcome measurement set provides global standardisation, supports the priorities of patients and clinicians, enables meta-analysis, and is appropriate for use in low-income and middle-income settings.
Assuntos
Ensaios Clínicos como Assunto , Mordeduras de Serpentes , Humanos , Consenso , Avaliação da Deficiência , Avaliação de Resultados em Cuidados de Saúde , Mordeduras de Serpentes/diagnóstico , Inquéritos e QuestionáriosRESUMO
Snakebite clinical trials have often used heterogeneous outcome measures and there is an urgent need for standardisation. A globally representative group of key stakeholders came together to reach consensus on a globally relevant set of core outcome measurements. Outcome domains and outcome measurement instruments were identified through searching the literature and a systematic review of snakebite clinical trials. Outcome domains were shortlisted by use of a questionnaire and consensus was reached among stakeholders and the patient group through facilitated discussions and voting. Five universal core outcome measures should be included in all future snakebite clinical trials-mortality, WHO disability assessment scale, patient-specific functional scale, acute allergic reaction by Brown criteria, and serum sickness by formal criteria. Additional syndrome-specific core outcome measures should be used depending on the biting species. This core outcome measurement set provides global standardisation, supports the priorities of patients and clinicians, enables meta-analysis, and is appropriate for use in low-income and middle-income settings.
Assuntos
Saúde Global , Mordeduras de Serpentes , Humanos , Consenso , Avaliação de Resultados em Cuidados de Saúde , Mordeduras de Serpentes/terapia , Inquéritos e Questionários , Resultado do Tratamento , Ensaios Clínicos como AssuntoRESUMO
BACKGROUND: Evidence indicates that fractional doses of yellow fever vaccine are safe and sufficiently immunogenic for use during yellow fever outbreaks. However, there are no data on the generalisability of this observation to populations living with HIV. Therefore, we aimed to evaluate the immunogenicity of fractional and standard doses of yellow fever vaccine in HIV-positive adults. METHODS: We conducted a randomised, double-blind, non-inferiority substudy in Kilifi, coastal Kenya to compare the immunogenicity and safety of a fractional dose (one-fifth of the standard dose) versus the standard dose of 17D-213 yellow fever vaccine among HIV-positive volunteers. HIV-positive participants aged 18-59 years, with baseline CD4+ T-cell count of at least 200 cells per mL, and who were not pregnant, had no previous history of yellow fever vaccination or infection, and had no contraindication for yellow fever vaccination were recruited from the community. Participants were randomly assigned 1:1 in blocks (variable block sizes) to either a fractional dose or a standard dose of the 17D-213 yellow fever vaccine. Vaccines were administered subcutaneously by an unblinded nurse and pharmacist; all other study personnel were blinded to the vaccine allocation. The primary outcome of the study was the proportion of participants who seroconverted by the plaque reduction neutralisation test (PRNT50) 28 days after vaccination for the fractional dose versus the standard dose in the per-protocol population. Secondary outcomes were assessment of adverse events and immunogenicity during the 1-year follow-up period. Participants were considered to have seroconverted if the post-vaccination antibody titre was at least 4 times greater than the pre-vaccination titre. We set a non-inferiority margin of not less than a 17% decrease in seroconversion in the fractional dose compared with the standard dose. This study is registered with ClinicalTrials.gov, NCT02991495. FINDINGS: Between Jan 29, 2019, and May 17, 2019, 303 participants were screened, and 250 participants were included and vaccinated; 126 participants were assigned to the fractional dose and 124 to the standard dose. 28 days after vaccination, 112 (96%, 95% CI 90-99) of 117 participants in the fractional dose group and 115 (98%, 94-100) of 117 in the standard dose group seroconverted by PRNT50. The difference in seroconversion between the fractional dose and the standard dose was -3% (95% CI -7 to 2). Fractional dosing therefore met the non-inferiority criterion, and non-inferiority was maintained for 1 year. The most common adverse events were headache (n=31 [12%]), fatigue (n=23 [9%]), myalgia (n=23 [9%]), and cough (n=14 [6%]). Reported adverse events were either mild (182 [97%] of 187 adverse events) or moderate (5 [3%]) and were self-limiting. INTERPRETATION: Fractional doses of the 17D-213 yellow fever vaccine were sufficiently immunogenic and safe demonstrating non-inferiority to the standard vaccine dose in HIV-infected individuals with CD4+ T cell counts of at least 200 cells per mL. These results provide confidence that fractional dose recommendations are applicable to populations with high HIV prevalence. FUNDING: Wellcome Trust, Médecins Sans Frontières Foundation, and the UK Department for International Development.
Assuntos
Infecções por HIV , Vacina contra Febre Amarela , Febre Amarela , Adulto , Feminino , Humanos , Gravidez , Anticorpos Antivirais , Método Duplo-Cego , Imunogenicidade da Vacina , Quênia , Vacinação/métodos , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/efeitos adversosRESUMO
Background: Falciparum malaria remains a global health problem. Two vaccines, based on the circumsporozoite antigen, are available. RTS, S/AS01 was recommended for use in 2021 following the advice of the World Health Organisation (WHO) Strategic Advisory Group of Experts (SAGE) on Immunization and WHO Malaria Policy Advisory Group (MPAG). It has since been pre-qualified in 2022 by the WHO. R21 is similar to RTS, S/AS01, and recently licensed in Nigeria, Ghana and Burkina Faso following Phase 3 trial results. Methods: We conducted a Phase 1b age de-escalation, dose escalation bridging study after a change in the manufacturing process for R21. We recruited healthy adults and children and used a three dose primary vaccination series with a booster dose at 1-2 years. Variable doses of R21 and adjuvant (Matrix-M ™) were administered at 10µgR21/50 µg Matrix-M™, 5µgR21/25µg Matrix-M™ and 5µgR21/50µg Matrix-M™ to 20 adults, 20 children, and 51 infants. Results: Self-limiting adverse events were reported relating to the injection site and mild systemic symptoms. Two serious adverse events were reported, neither linked to vaccination. High levels of IgG antibodies to the circumsporozoite antigen were induced, and geometric mean titres in infants, the target group, were 1.1 (0.9 to 1.3) EU/mL at day 0, 10175 (7724 to 13404) EU/mL at day 84 and (following a booster dose at day 421) 6792 (5310 to 8687) EU/mL at day 456. Conclusion: R21/Matrix-M™ is safe, and immunogenic when given at varied doses with the peak immune response seen in infants 28 days after a three dose primary vaccination series given four weeks apart. Antibody responses were restored 28 days after a 4 th dose given one year post a three dose primary series in the young children and infants. Registration: Clinicaltrials.gov (NCT03580824; 9 th of July 2018; Pan African Clinical Trials Registry (PACTR202105682956280; 17 th May 2021).
RESUMO
Background: There are limited data on the immunogenicity of coronavirus disease 2019 (COVID-19) vaccines in African populations. Here we report the immunogenicity and safety of the ChAdOx1 nCoV-19 (AZD1222) vaccine from a phase 1/2 single-blind, randomised, controlled trial among adults in Kenya conducted as part of the early studies assessing vaccine performance in different geographical settings to inform Emergency Use Authorisation. Methods: We recruited and randomly assigned (1:1) 400 healthy adults aged ≥18 years in Kenya to receive ChAdOx1 nCoV-19 or control rabies vaccine, each as a two-dose schedule with a 3-month interval. The co-primary outcomes were safety, and immunogenicity assessed using total IgG enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 spike protein 28 days after the second vaccination. Results: Between 28 th October 2020 and 19 th August 2021, 400 participants were enrolled and assigned to receive ChAdOx1 nCoV-19 (n=200) or rabies vaccine (n=200). Local and systemic adverse events were self-limiting and mild or moderate in nature. Three serious adverse events were reported but these were deemed unrelated to vaccination. The geometric mean anti-spike IgG titres 28 days after second dose vaccination were higher in the ChAdOx1 group (2773 ELISA units [EU], 95% CI 2447, 3142) than in the rabies vaccine group (61 EU, 95% CI 45, 81) and persisted over the 12 months follow-up. We did not identify any symptomatic infections or hospital admissions with respiratory illness and so vaccine efficacy against clinically apparent infection could not be measured. Vaccine efficacy against asymptomatic SARS-CoV-2 infection was 38.4% (95% CI -26.8%, 70.1%; p=0.188). Conclusions: The safety, immunogenicity and efficacy against asymptomatic infection of ChAdOx1 nCoV-19 among Kenyan adults was similar to that observed elsewhere in the world, but efficacy against symptomatic infection or severe disease could not be measured in this cohort. Pan-African Clinical Trials Registration: PACTR202005681895696 (11/05/2020).