Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Microb Ecol ; 84(4): 1166-1181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34727198

RESUMO

The subterranean microbiota of plants is of great importance for plant growth and health, as root-associated microbes can perform crucial ecological functions. As the microbial environment of roots is extremely diverse, identifying keystone microorganisms in plant roots, rhizosphere, and bulk soil is a necessary step towards understanding the network of influence within the microbial community associated with roots and enhancing its beneficial elements. To target these hot spots of microbial interaction, we used inter-kingdom network analysis on the canola growth phase of a long-term cropping system diversification experiment conducted at four locations in the Canadian Prairies. Our aims were to verify whether bacterial and fungal communities of canola roots, rhizosphere, and bulk soil are related and influenced by diversification of the crop rotation system; to determine whether there are common or specific core fungi and bacteria in the roots, rhizosphere, and bulk soil under canola grown in different environments and with different levels of cropping system diversification; and to identify hub taxa at the inter-kingdom level that could play an important ecological role in the microbiota of canola. Our results showed that fungi were influenced by crop diversification, which was not the case on bacteria. We found no core microbiota in canola roots but identified three core fungi in the rhizosphere, one core mycobiota in the bulk soil, and one core bacterium shared by the rhizosphere and bulk soil. We identified two bacterial and one fungal hub taxa in the inter-kingdom networks of the canola rhizosphere, and one bacterial and two fungal hub taxa in the bulk soil. Among these inter-kingdom hub taxa, Bradyrhizobium sp. and Mortierella sp. are particularly influential on the microbial community and the plant. To our knowledge, this is the first inter-kingdom network analysis utilized to identify hot spots of interaction in canola microbial communities.


Assuntos
Bradyrhizobium , Brassica napus , Microbiota , Solo , Microbiologia do Solo , Fungos , Raízes de Plantas/microbiologia , Canadá , Rizosfera , Bactérias , Plantas
2.
Environ Microbiol ; 22(3): 1066-1088, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31600863

RESUMO

Soil microorganisms play a critical role in the biosphere, and the influence of cropland fertilization on the evolution of soil as a living entity is being actively documented. In this study, we used a shotgun metagenomics approach to globally expose the effects of 50-year N and P fertilization of wheat on soil microbial community structure and function, and their potential involvement in overall N cycling. Nitrogen (N) fertilization increased alpha diversity in archaea and fungi while reducing it in bacteria. Beta diversity of archaea, bacteria and fungi, as well as soil function, were also mainly driven by N fertilization. The abundance of archaea was negatively impacted by N fertilization while bacterial and fungal abundance was increased. The responses of N metabolism-related genes to fertilization differed in archaea, bacteria and fungi. All archaeal N metabolic processes were decreased by N fertilization, while denitrification, assimilatory nitrate reduction and organic-N metabolism were highly increased by N fertilization in bacteria. Nitrate assimilation was the main contribution of fungi to N cycling. Thaumarchaeota and Halobacteria in archaea; Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria in bacteria; and Sordariomycetes in fungi participated dominantly and widely in soil N metabolic processes.


Assuntos
Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Microbiologia do Solo , Triticum/microbiologia , Archaea/efeitos dos fármacos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biodiversidade , Fertilizantes , Fungos/efeitos dos fármacos , Fungos/fisiologia , Estudos Longitudinais , Solo/química , Triticum/crescimento & desenvolvimento
3.
Environ Microbiol ; 22(11): 4545-4556, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32656968

RESUMO

Agricultural production is dependent on inputs of nitrogen (N) whose cycle relies on soil and crop microbiomes. Crop diversification has increased productivity; however, its impact on the expression of microbial genes involved in N-cycling pathways remains unknown. Here, we assessed N-cycling gene expression patterns in the root and rhizosphere microbiomes of five oilseed crops as influenced by three 2-year crop rotations. The first phase consisted of fallow, lentil or wheat, and the second phase consisted of one of five oilseed crops. Expression of bacterial amoA, nirK and nirS genes showed that the microbiome of Ethiopian mustard had the lowest and that of camelina the highest potential for N loss. A preceding rotation phase of lentil significantly increased the expression of nifH gene by 23% compared with wheat and improved nxrA gene expression by 51% with chemical fallow in the following oilseed crops respectively. Lentil substantially increased biological N2 fixation and reduced denitrification in the following oilseed crops. Our results also revealed that most N-cycling gene transcripts are more abundant in the microbiomes associated with roots than with the rhizosphere. The outcome of our investigation brings a new level of understanding on how crop diversification and rotation sequences are related to N-cycling in annual cropping systems.


Assuntos
Camellia/metabolismo , Produtos Agrícolas/microbiologia , Lens (Planta)/metabolismo , Mostardeira/metabolismo , Ciclo do Nitrogênio/fisiologia , Triticum/metabolismo , Agricultura/métodos , Bactérias/genética , Camellia/microbiologia , Produção Agrícola/métodos , Lens (Planta)/microbiologia , Microbiota/fisiologia , Mostardeira/microbiologia , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo , Triticum/microbiologia
4.
Microb Ecol ; 80(4): 762-777, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31897569

RESUMO

Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.


Assuntos
Brassica napus/microbiologia , Produção Agrícola , Fungos/isolamento & purificação , Micobioma/fisiologia , Rizosfera , Alberta , Produção Agrícola/métodos , Saskatchewan , Estações do Ano
5.
Mycorrhiza ; 29(6): 591-598, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760478

RESUMO

Arbuscular mycorrhizal (AM) fungi are ecologically important for the growth and survival of most vascular plants. These fungi are known as obligate biotrophs that acquire carbon solely from host plants. A 13C-labeling experiment revealed the ability of axenically grown Rhizophagus irregularis DAOM 197198 to derive carbon from axenic culture on a relatively novel medium containing two sources of palmitic acid developed by Ishii (designated IH medium). In a separate experiment, this model fungus grew larger mycelia and produced more daughter spores on the IH medium in the presence of two Variovorax paradoxus strains than in axenic culture. In contrast, a strain of Mycobacterium sp. did not influence the growth of the AM fungus. Rhizophagus irregularis produced branched absorbing structures on the IH medium and, in monoxenic culture with V. paradoxus, sometimes formed densely packed hyphal coils. In this study, we report for the first time the formation of coarse terminal pelotons and of terminal and intercalary very fine (≈ 1 µm diameter) hyphal elongations, which could form daughter spores in the presence of V. paradoxus. This study shows the value of IH medium and certain rhizobacteria in the culture of R. irregularis DAOM 197198 in vitro.


Assuntos
Glomeromycota , Micorrizas , Técnicas de Cocultura , Hifas , Desenvolvimento Vegetal , Raízes de Plantas
6.
Can J Microbiol ; 64(4): 265-275, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29390194

RESUMO

Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.


Assuntos
Cicer/genética , Cicer/microbiologia , Endófitos/fisiologia , Variação Genética/fisiologia , Micorrizas/fisiologia , Biomassa , Ecossistema , Fungos/crescimento & desenvolvimento , Genótipo , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Solo , Simbiose
7.
Can J Microbiol ; 64(8): 527-536, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29633625

RESUMO

Understanding the variation in how wheat genotypes shape their arbuscular mycorrhizal (AM) fungal communities in a prairie environment is foundational to breeding for enhanced AM fungi-wheat interactions. The AM fungal communities associated with 32 durum wheat genotypes were described by pyrosequencing of amplicons. The experiment was set up at two locations in the Canadian prairies. The intensively managed site was highly dominated by Funneliformis. Genotype influenced the AM fungal community in the rhizosphere soil, but there was no evidence of a differential genotype effect on the AM fungal community of durum wheat roots. The influence of durum wheat genotype on the AM fungal community of the soil was less important at the intensively managed site. Certain durum wheat genotypes, such as Strongfield, Plenty, and CDC Verona, were associated with high abundance of Paraglomus, and Dominikia was undetected in the rhizosphere of the recent cultivars Enterprise, Eurostar, Commander, and Brigade. Genetic variation in the association of durum wheat with AM fungi suggests the possibility of increasing the sustainability of cropping systems through the use of durum wheat genotypes that select highly effective AM fungal taxa residing in the agricultural soils of the Canadian prairies.


Assuntos
Pradaria , Micorrizas/classificação , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Triticum/microbiologia , Agricultura , Biodiversidade , Canadá , Variação Genética , Genótipo , Micorrizas/genética , Triticum/genética
8.
Can J Microbiol ; 62(3): 263-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825726

RESUMO

The selection of genotypes under high soil fertility may alter the effectiveness of mycorrhizal symbioses naturally forming between crop plants and the mycorrhizal fungi residing in cultivated fields. We tested the hypothesis that the mycorrhizal symbiosis of 5 landraces functions better than the mycorrhizal symbiosis of 27 cultivars of durum wheat that were bred after the development of the fertilizer industry. We examined the development of mycorrhiza and the response of these genotypes to mycorrhiza formation after 4 weeks of growth under high and low soil fertility levels in the greenhouse. The durum wheat genotypes were seeded in an established extraradical hyphal network of Rhizophagus irregularis and in a control soil free of mycorrhizal fungi. The percentage of root length colonized by mycorrhizal fungi was lower in landraces (21%) than in cultivars (27%; P = 0.04) and in the most recent releases (29%; P = 0.02), which were selected under high soil fertility levels. Plant growth response to mycorrhiza varied from -36% to +19%. Overall, durum wheat plant breeding in Canada has increased the mycorrhizal development in wheat grown at a low soil fertility level. However, breeding had inconsistent effects on mycorrhizal development and has led to the production of cultivars with patterns of regulation ranging from unimproved to inefficient.


Assuntos
Micorrizas/fisiologia , Melhoramento Vegetal , Triticum/crescimento & desenvolvimento , Genótipo , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Triticum/microbiologia
9.
Appl Environ Microbiol ; 81(7): 2368-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616789

RESUMO

Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.


Assuntos
Biota , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fungos/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Saskatchewan , Análise de Sequência de DNA
10.
Can J Microbiol ; 61(5): 315-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776569

RESUMO

Determining how soil microorganisms respond to crop management systems during winter could further our understanding of soil phosphorus (P) transformations. This study assessed the effects of tillage (moldboard plowing or no-till) and P fertilization (0, 17.5, or 35 kg P·ha(-1)) on soil microbial biomass, enzymatic activity, and microbial community structure in winter, in a long-term (18 years) corn (Zea mays L.) and soybean (Glycine max L.) rotation established in 1992 in the province of Quebec, Canada. Soil samples were collected at 2 depths (0-10 and 10-20 cm) in February 2010 and 2011 after the soybean and the corn growing seasons, respectively. Winter conditions increased the amounts of soil microbial biomasses but reduced the overall enzymatic activity of the soil, as compared with fall levels after corn. P fertilization had a quadratic effect on the amounts of total, bacterial, arbuscular mycorrhizal fungi phospholipid fatty acid markers after corn but not after soybean. The soil microbial community following the soybean and the corn crops in winter had a different structure. These findings suggest that winter conditions and crop-year could be important factors affecting the characteristics of the soil microbial community under different tillage and mineral P fertilization.


Assuntos
Agricultura , Fósforo/farmacologia , Microbiologia do Solo , Biomassa , Canadá , Fertilizantes , Estações do Ano , Solo/química , Glycine max , Zea mays
11.
Appl Environ Microbiol ; 79(21): 6719-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995929

RESUMO

The influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity.


Assuntos
Biodiversidade , Micorrizas/genética , Microbiologia do Solo , Solo/química , Triticum/crescimento & desenvolvimento , Agricultura , Análise de Variância , Sequência de Bases , Canadá , Conservação dos Recursos Naturais , Geografia , Dados de Sequência Molecular , Micorrizas/classificação , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
12.
Front Plant Sci ; 14: 1175946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484467

RESUMO

Grasslands play an important role in conserving natural biodiversity and providing ecosystem functions and services for societies. Soil fertility is an important property in grassland, and the monitoring of soil fertility can provide crucial information to optimize ecosystem productivity and sustainability. Testing various soil physiochemical properties related to fertility usually relies on traditional measures, such as destructive sampling, pre-test treatments, labor-intensive procedures, and costly laboratory measurements, which are often difficult to perform. However, soil enzyme activity reflecting the intensity of soil biochemical reactions is a reliable indicator of soil properties and thus enzyme assays could be an efficient alternative to evaluate soil fertility. Here, we review the latest research on the features and functions of enzymes catalyzing the biochemical processes that convert organic materials to available plant nutrients, increase soil carbon and nutrient cycling, and enhance microbial activities to improve soil fertility. We focus on the complex relationships among soil enzyme activities and functions, microbial biomass, physiochemical properties, and soil/crop management practices. We highlight the biochemistry of enzymes and the rationale for using enzyme activities to indicate soil fertility. Finally, we discuss the limits and disadvantages of the potential new molecular tool and provide suggestions to improve the reliability and feasibility of the proposed alternative.

13.
Can J Microbiol ; 58(12): 1368-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23210994

RESUMO

Field crops influence the biotic properties of the soil, impacting the health and productivity of subsequent crops. Polymerase chain reaction and 454 GS FLX pyrosequencing of amplicons were used to clarify the legacy of chickpea and pea crops on the quality of the bacterial community colonizing the root endosphere of subsequent crops of wheat, in a replicated field study. Similar communities of root endosphere bacteria were formed in durum wheat grown after pea and chickpea crops when chickpea crops were terminated as early as pea (July). Termination of the chickpea crops in September led to the domination of Firmicutes in wheat root endosphere; Actinobacteria dominated the wheat root endosphere following early pulse crop termination. The architecture of wheat plants was correlated with the composition of its root endosphere community. High grain yield was associated with the production of fewer but larger wheat heads, the abundance of endospheric Actinobacteria and Acidobacteria, and the scarcity of endospheric Firmicutes. Pulse termination time affected wheat root endosphere colonization strongly in 2009 but weakly in 2010, an abnormally wet year. This study improved our understanding of the so-called "crop rotation effect" in pulse-wheat systems and showed how this system can be manipulated through agronomic decisions.


Assuntos
Agricultura/métodos , Cicer/microbiologia , Endófitos/crescimento & desenvolvimento , Pisum sativum/microbiologia , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Actinobacteria/crescimento & desenvolvimento , Cicer/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Pisum sativum/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Solo/análise , Triticum/microbiologia , Tempo (Meteorologia)
14.
Can J Microbiol ; 58(8): 990-1001, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827807

RESUMO

A growing body of evidence obtained from studies performed under controlled conditions suggests that glyphosate use can modify microbial community assemblages. However, few studies have examined the influence of glyphosate in agroecosystems. We examined 4 wheat-based production systems typical of the Canadian prairie over 2 years to answer the following question: Does preseeding of glyphosate impact soil rhizosphere microorganisms? If so, do cropping practices influence this impact? Glyphosate caused a shift in the species dominating the arbuscular mycorrhizal fungal community in the rhizosphere, possibly through the modification of host plant physiology. Glyphosate stimulated rhizobacterial growth while having no influence on saprotrophic fungi, suggesting a greater abundance of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in bacteria than in fungi. Glyphosate stimulated rhizosphere bacteria in pea but not in urea-fertilized durum wheat, which is consistent with inhibition of EPSPS tolerance to residual glyphosate through high ammonium levels. Mitigation of the effects of glyphosate on rhizosphere bacteria through tillage suggests a reduction in residual glyphosate activity through increased adsorption to soil binding sites upon soil mixing. The influence of glyphosate on Gram-negative bacteria was mitigated under drought conditions in 2007. Our experiment suggests that interactions between soil fertility, tillage, and cropping practices shape the influence of glyphosate use on rhizosphere microorganisms.


Assuntos
Agricultura/métodos , Bactérias/efeitos dos fármacos , Ecossistema , Glicina/análogos & derivados , Micorrizas/efeitos dos fármacos , Rizosfera , Microbiologia do Solo , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Canadá , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Glicina/farmacologia , Micorrizas/crescimento & desenvolvimento , Pisum sativum/microbiologia , Triticum/microbiologia , Glifosato
15.
Can J Microbiol ; 58(1): 81-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22220554

RESUMO

The arbuscular mycorrhizal (AM) fungal resources present in wheat fields of the Canadian Prairie were explored using 454 pyrosequencing. Of the 33 dominant AM fungal operational taxonomic units (OTUs) found in the 76 wheat fields surveyed at anthesis in 2009, 14 clustered as Funneliformis - Rhizophagus, 16 as Claroideoglomus, and 3 as Diversisporales. An OTU of Funneliformis mosseae and one OTU of Diversisporales each accounted for approximately 16% of all AM fungal OTUs. The former was ubiquitous, and the latter was mainly restricted to the Black and Dark Brown Chernozems. AM fungal OTU community composition was better explained by the Chernozem great groups (P = 0.044) than by measured soil properties. Fifty-two percent of the AM fungal OTUs were unrelated to measured soil properties. Black Chernozems hosted the largest AM fungal OTU diversity and almost twice the number of AM fungal sequences seen in Dark Brown Chernozems, the great group ranking second for AM fungal sequence abundance. Brown Chernozems hosted the lowest AM fungal abundance and an AM fungal diversity as low as that seen in Gray soils. We concluded that Black Chernozems are most conducive to AM fungal proliferation. AM fungi are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.


Assuntos
Biodiversidade , Fungos/classificação , Micorrizas/classificação , Microbiologia do Solo , Triticum/microbiologia , Canadá , Fungos/genética , Micorrizas/genética , Filogenia , Solo/química
16.
Front Plant Sci ; 13: 828145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283923

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF. It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that is known to not form this association. From 2008 to 2018, an experiment was replicated at three locations of the Canadian Prairies and it was used to assess the impact of canola on the community of AMF naturally occurring in three cropping systems, canola monoculture, or canola in two different rotation systems (2-years, canola-wheat and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to: (i) determine diversity and community structure of AMF, we expected that canola will negatively impact AMF communities in function of its frequency in crop rotations and (ii) wanted to assess how these AMF communities interact with other fungi and bacteria. We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and bulk soils, confirming the persistence of a diversified AMF community in canola-planted soil, even after 10 years of canola monoculture, which was unexpected considering that canola is among non-mycorrhizal plants. Network analysis revealed a broad range of potential interactions between canola-associated AMF and some fungal and bacterial taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that could benefit AMF in absence of host plants. The persistence of an AMF community in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to new perspectives for further studies about AMF and soil microbes interactions and AMF subsistence without mycotrophic host plants.

17.
Front Microbiol ; 13: 815890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756012

RESUMO

The North American Great Plains cover a large area of the Nearctic ecozone, and an important part of this biome is semiarid. The sustainable intensification of agriculture that is necessary to produce food for an ever-increasing world population requires knowledge of the taxonomic and functional structure of the soil microbial community. In this study, we investigated the influence of soil depth on the composition and functions of the microbial communities hosted in agricultural soils of a semiarid agroecosystem, using metagenomic profiling, and compared them to changes in soil chemical and physical properties. Shotgun sequencing was used to determine the composition and functions of the soil microbial community of 45 soil samples from three soil depths (0-15 cm, 15-30 cm, and 30-60 cm) under different agricultural land use types (native prairie, seeded prairie, and cropland) in southwest Saskatchewan. Analysis of community composition revealed the declining abundance of phyla Verrucomicrobia, Bacteroidetes, Chlorophyta, Bacillariophyta, and Acidobacteria with soil depth, whereas the abundance of phyla Ascomycota, Nitrospirae, Planctomycetes, and Cyanobacteria increased with soil depth. Soil functional genes related to nucleosides and nucleotides, phosphorus (P) metabolism, cell division and cell cycle, amino acids and derivatives, membrane transport, and fatty acids were particularly abundant at 30-60 cm. In contrast, functional genes related to DNA and RNA metabolism, metabolism of nitrogen, sulfur and carbohydrates, and stress response were more abundant in the top soil depth. The RDA analysis of functional genes and soil physico-chemical properties revealed a positive correlation between phages and soil organic P concentrations. In the rooting zone of this semiarid agroecosystem, soil microbes express variable structural patterns of taxonomic and functional diversity at different soil depths. This study shows that the soil microbial community is structured by soil depth and physicochemical properties, with the middle soil depth being an intermediate transition zone with a higher taxonomic diversity. Our results suggest the co-existence of various microbial phyla adapted to upper and lower soil depths in an intermediate-depth transition zone.

18.
Mycorrhiza ; 21(3): 183-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20552233

RESUMO

Consistency of response to arbuscular mycorrhizal (AM) inoculation is required for efficient use of AM fungi in plant production. Here, we found that the response triggered in plants by an AM strain depends on the properties of the soil where it is introduced. Two data sets from 130 different experiments assessing the outcome of a total of 548 replicated single inoculation trials conducted either in soils with a history of (1) high input agriculture (HIA; 343 replicated trials) or (2) in more pristine soils from coffee plantations (CA; 205 replicated trials) were examined. Plant response to inoculation with different AM strains in CA soils planted with coffee was related to soil properties associated with soil types. The strains Glomus fasciculatum-like and Glomus etunicatum-like were particularly performant in soil relatively rich in nutrients and organic matter. Paraglomus occultum and Glomus mosseae-like performed best in relatively poor soils, and G. mosseae and Glomus manihotis did best in soils of medium fertility. Acaulospora scrobiculata, Diversispora spurca, G. mosseae-like, G. mosseae and P. occultum stimulated coffee growth best in Chromic, Eutric Alluvial Cambisol, G. fasciculatum-like and G. etunicatum-like in Calcaric Cambisol and G. manihotis, in Chromic, Eutric Cambisols. Acaulospora scrobiculata and Diversispora spurca strains performed best in Chromic Alisols and Rodic Ferralsols. There was no significant relationship between plant response to AM fungal strains and soil properties in the HIA soil data set, may be due to variation induced by the use of different host plant species and to modification of soil properties by a history of intensive production. Consideration of the performance of AM fungal strains in target soil environments may well be the key for efficient management of the AM symbiosis in plant production.


Assuntos
Coffea/microbiologia , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Microbiologia do Solo , Coffea/crescimento & desenvolvimento , Coffea/fisiologia , Fungos/fisiologia , Especificidade de Hospedeiro , Micorrizas/fisiologia , Simbiose
19.
Microb Ecol ; 59(4): 724-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20082070

RESUMO

Septate endophytes proliferating in the roots of grasslands' plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1 omega 5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer.


Assuntos
Biodiversidade , Micorrizas/classificação , Poaceae/microbiologia , Microbiologia do Solo , Biomassa , Canadá , DNA Fúngico/análise , Ácidos Graxos/análise , Micorrizas/química , Micorrizas/genética , Fosfolipídeos/análise , Filogenia , Raízes de Plantas/microbiologia , Solo/análise , Simbiose , Fatores de Tempo
20.
Front Plant Sci ; 11: 1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849748

RESUMO

Wheat is among the important crops harnessed by humans whose breeding efforts resulted in a diversity of genotypes with contrasting traits. The goal of this study was to determine whether different old and new cultivars of durum wheat (Triticum turgidum L. var. durum) recruit specific arbuscular mycorrhizal (AM) fungal communities from indigenous AM fungal populations of soil under field conditions. A historical set of five landraces and 26 durum wheat cultivars were field cultivated in a humid climate in Eastern Canada, under phosphorus-limiting conditions. To characterize the community of AMF inhabiting bulk soil, rhizosphere, and roots, MiSeq amplicon sequencing targeting the 18S rRNA gene (SSU) was performed on total DNAs using a nested PCR approach. Mycorrhizal colonization was estimated using root staining and microscope observations. A total of 317 amplicon sequence variants (ASVs) were identified as belonging to Glomeromycota. The core AM fungal community (i.e., ASVs present in > 50% of the samples) in the soil, rhizosphere, and root included 29, 30, and 29 ASVs, respectively. ASVs from the genera Funneliformis, Claroideoglomus, and Rhizophagus represented 37%, 18.6%, and 14.7% of the sequences recovered in the rarefied dataset, respectively. The two most abundant ASVs had sequence homology with the 18S sequences from well-identified herbarium cultures of Funneliformis mosseae BEG12 and Rhizophagus irregularis DAOM 197198, while the third most abundant ASV was assigned to the genus Paraglomus. Cultivars showed no significant difference of the percentage of root colonization ranging from 57.8% in Arnautka to 84.0% in AC Navigator. Cultivars were generally associated with similar soil, rhizosphere, and root communities, but the abundance of F. mosseae, R. irregularis, and Claroideoglomus sp. sequences varied in Eurostar, Golden Ball, and Wakooma. Although these results were obtained in one field trial using a non-restricted pool of durum wheat and at the time of sampling, that may have filtered the community in biotopes. The low genetic variation between durum wheat cultivars for the diversity of AM symbiosis at the species level suggests breeding resources need not be committed to leveraging plant selective influence through the use of traditional methods for genotype development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA