RESUMO
On 10 January 2001, Cassini briefly entered into the magnetosphere of Jupiter, en route to Saturn. During this excursion into the Jovian magnetosphere, the Cassini Magnetosphere Imaging Instrument/Charge-Energy-Mass Spectrometer detected oxygen and sulfur ions. While Charge-Energy-Mass Spectrometer can distinguish between oxygen and sulfur charge states directly, only 95.9 ± 2.9 keV/e ions were sampled during this interval, allowing for a long time integration of the tenuous outer magnetospheric (~200 RJ) plasma at one energy. For this brief interval for the 95.9 keV/e ions, 96% of oxygen ions were O+, with the other 4% as O2+, while 25% of the energetic sulfur ions were S+, 42% S2+, and 33% S3+. The S2+/O+ flux ratio was observed to be 0.35 (±0.06 Poisson error).
RESUMO
Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.
RESUMO
The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001 (ref. 6). Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.
RESUMO
The outer limit of the Solar System is often considered to be at the distance from the Sun where the solar wind changes from supersonic to subsonic flow. Theory predicts that a termination shock marks this boundary, with locations ranging from a few to over 100 au (1 Au approximately 1.5 x 10(8) km, the distance from Earth to the Sun). 'Pick-up ions' that originate as interstellar neutral atoms should be accelerated to tens of MeV at the termination shock, generating anomalous cosmic rays. Here we report a large increase in the intensity of energetic particles in the outer heliosphere, as measured by an instrument on the Voyager 1 spacecraft. We argue that the spacecraft exited the supersonic solar wind and passed into the subsonic region (possibly beyond the termination shock) on about 1 August 2002 at a distance of approximately 85 Au (heliolatitude approximately 34 degrees N), then re-entered the supersonic solar wind about 200 days later at approximately 87 au from the Sun. We show that the composition of the ions accelerated at the putative termination shock is that of anomalous cosmic rays and of interstellar pick-up ions.
RESUMO
Renal stone formation due to hypercalciuria is a relatively common disorder with clear evidence for genetic predisposition, but cryptic phenotypic heterogeneity has hampered identification of candidate genes. The R990G single-nucleotide polymorphism (SNP) of the calcium sensing receptor (CASR) gene has been associated with hypercalciuria in stone formers and shows the appropriate functional phenotype in cell culture. In our preliminary association analysis of a case-control cohort, however, we observed significant Hardy-Weinberg disequilibrium (HWD) for the cases (n= 223), but not controls (n= 676) at the R990G locus, pointing us toward the general disease model incorporating HWD. Because there is an adjacent CASR SNP, A986S, which is in negative linkage disequilibrium with R990G, we extended the general disease model to enable testing of a two-site hypothesis. In our data set, there is no lack of fit (P= .345) for the single-locus model for the R990G genotype, and likelihood ratio testing favors a recessive effect with an eight-fold increase in risk (P < .001) for GG homozygotes, relative to wild-type, based on a population prevalence of 2%. Addition of the A986S genotype provides no additional information either by itself or when included in our two-site model.
Assuntos
Predisposição Genética para Doença , Cálculos Renais/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Receptores de Detecção de Cálcio/genética , Estudos de Casos e Controles , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-IdadeRESUMO
Data from the Voyager II spacecraft showed that Uranus has a large magnetic field with geometry similar to an offset tilted dipole. To interpret the origin of the magnetic field, measurements were made of electrical conductivity and equation-of-state data of the planetary "ices" ammonia, methane, and "synthetic Uranus" at shock pressures and temperatures up to 75 gigapascals and 5000 K. These pressures and temperatures correspond to conditions at the depths at which the surface magnetic field is generated. Above 40 gigapascals the conductivities of synthetic Uranus, water, and ammonia plateau at about 20(ohm-cm)(-1), providing an upper limit for the electrical conductivity used in kinematic or dynamo calculations. The nature of materials at the extreme conditions in the interior is discussed.
RESUMO
During the December 1974 Pioneer 11 Jupiter encounter our experiment provided measurements of Jovian energetic protons and electrons both in the magnetic equatorial zone and at previously unexplored high magnetic latitudes. Many of the observations and conclusions from the Pioneer 10 encounter in 1973 were confirmed, with several important exceptions and new findings. We report evidence from Pioneer 11 for protons ( approximately 1 million electron volts) of Jovian origin in interplanetary space. In the outer magnetosphere particle intensities at high magnetic latitudes were comparable to those observed in the equatorial zone, and 10-hour variations in particle intensities and spectra were observed at both high and low magnetic latitudes. Therefore, confinement of particles in the outer magnetosphere to a thin equatorial magnetodisc is adequate neither as a description of the particle distribution nor as a complete explanation of the 10-hour variations. Pioneer 11 data support a model in which the intensity varies with a 10-hour period in phase throughout the sunward side of the magnetosphere and is relatively independent of position within the magnetosphere. Transient, highly anisotropic bursts of protons with energies of approximately 1 million electron volts observed near the orbit of Ganymede suggest local acceleration in some regions of the magnetosphere. In the inner core where particles are stably trapped, a maximum in the high-energy nucleonic flux was again found, corresponding to the Pioneer 10 maximum at approximately 3.4 Jupiter radii (R(J)), which is apparently a persistent feature of, the inner radiation zone. In addition, Pioneer 11 data indicate two more local maxima in the nucleonic flux inside 3.4 R(J), one of which may be associated with absorption by Amalthea, and a maximum intensity at 1.9 R(J) more than 20 times that at 3.4 R(J), The flux of relativistic electrons reached a maximum on the magnetic equator at 1.8 R(J), only slightly less its closest approach at 3.1 R(J).
RESUMO
Measurements of the hot (electron and ion energies >/=20 and >/= 28 kiloelectron volts, respectively) plasma environment at Jupiter by the low-energy charged particle (LECP) instrument on Voyager 2 have revealed several new and unusual aspects of the Jovian magnetosphere. The magnetosphere is populated from its outer edge into a distance of at least approximately 30 Jupiter radii (R(J)) by a hot (3 x 10(8) to 5 x 10(8) K) multicomponent plasma consisting primarily of hydrogen, oxygen, and sulfur ions. Outside approximately 30 R(J) the hot plasma exhibits ion densities from approximately 10(-1) to approximately 10(-6) per cubic centimeter and energy densities from approximately 10(-8) to 10(-13) erg per cubic centimeter, suggesting a high beta plasma throughout the region. The plasma is flowing in the corotation direction to the edge of the magnetosphere on the dayside, where it is confined by solar wind pressure, and to a distance of approximately 140 to 160 R(J) on the nightside at approximately 0300 local time. Beyond approximately 150 R(J) the hot plasma flow changes into a "magnetospheric wind" blowing away from Jupiter at an angle of approximately 20 degrees west of the sun-Jupiter line, characterized by a temperature of approximately 3 x 10(8) K (26 kiloelectron volts), velocities ranging from approximately 300 to > 1000 kilometers per second, and composition similar to that observed in the inner magnetosphere. The radial profiles of the ratios of oxygen to helium and sulfur to helium (= 1 million electron volts per nucleon) monotonically increase toward periapsis, while the carbon to helium ratio stays relatively constant; a significant amount of sodium (Na/O approximately 0.05) has also been identified. The hydrogen to helium ratio ranges from approximately 20 just outside the magnetosphere to values up to approximately 300 inside; the modulation of this ratio suggests a discontinuity in the particle population at approximately 50 to 60 R(J). Large fluctuations in energetic particle intensities were observed on the inbound trajectory as the spacecraft approached Ganymede, some of which suggest the presence of a "wake." Five-and 10-hour periodicities were observed in the magnetosphere. Calculations of plasma flow velocities with the use of Compton-Getting formalism imply that plasma is mostly corotating to large radial distances from the planet. Thus the Jovian magnetosphere is confined by a plasma boundary (as was implied by the model of Brice and Ioannidis) rather than a conventional magnetopause. Inside the plasma boundary there exists a discontinuity at approximately 50 to 60 R(J) we have named the region inside this discontinuity the "inner plasmasphere."
RESUMO
The low-energy charged particle instrument on Voyager was designed to measure the hot plasma (electron and ion energies greater, similar 15 and greater, similar 30 kiloelectron volts, respectively) component of the Jovian magnetosphere. Protons, heavier ions, and electrons at these energies were detected nearly a third of an astronomical unit before encounter with the planet. The hot plasma near the magnetosphere boundary is predominantly composed of protons, oxygen, and sulfur in comparable proportions and a nonthermal power-law tail; its temperature is about 3 x 10(8) K, density about 5 x 10(-3) per cubic centimeter, and energy density comparable to that of the magnetic field. The plasma appears to be corotating throughout the magnetosphere; no hot plasma outflow, as suggested by planetary wind theories, is observed. The main constituents of the energetic particle population ( greater, similar200 kiloelectron volts per nucleon) are protons, helium, oxygen, sulfur, and some sodium observed throughout the outer magnetosphere; it is probable that the sulfur, sodium, and possibly oxygen originate at 1o. Fluxes in the outbound trajectory appear to be enhancedfrom approximately 90 degrees to approximately 130 degrees longitude (System III). Consistent low-energy particle flux periodicities were not observed on the inbound trajectory; both 5-and 10-hour periodicities were observed on the outbound trajectory. Partial absorption of > 10 million electron volts electrons is observed in the vicinity of the Io flux tube.
RESUMO
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.
RESUMO
The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii) There are large fluxes of electrons of approximately 1.5 million electron volts and smaller fluxes of electrons of approximately 10 million electron volts and of protons greater, similar 54 million electron volts inside the orbits of Enceladus and Mimas; all were sharply peaked perpendicular to the local magnetic field. (viii) In general, observed satellite absorption signatures were not located at positions predicted on the basis of dipole magnetic field models.
RESUMO
The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite lo, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the highlatitude region on the dusk side, which was traversed for the first time.
RESUMO
The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.
RESUMO
The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts = E = 20 megaelectron volts) and ions (28 keV = E = 150 MeV) in several energy channels, including compositional information at higher (>/=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the absence of an accurate magnetic-field model close to the planet. Other results indude the absence of upstream ion increases or energetic neutrals [particle intensity (j) < 2.8 x 10(-3) cm(-2) s(-1) keV(-1) near 35 keV, at approximately 40 R(N)] implying an upper limit to the volume-averaged atomic H density at R = 6 R(N) of = 20 cm(-3); and an estimate of the rate of darkening of methane ice at the location of 1989N1 ranging from approximately 10(5) years (1-micrometer depth) to approximately 2 x 10(6) years (10-micrometers depth). Finally, the electron fluxes at the orbit of Triton represent a power input of approximately 10(9) W into its atmosphere, apparently accounting for the observed ultraviolet auroral emission; by contrast, the precipitating electron (>22 keV) input on Neptune is approximately 3 x 10(7) W, surprisingly small when compared to energy input into the atmosphere of Jupiter, Saturn, and Uranus.
RESUMO
The sizes of Saturn's ring particles range from meters (boulders) to nanometers (dust). Determination of the rings' ages depends on loss processes, including the transport of dust into Saturn's atmosphere. During the Grand Finale orbits of the Cassini spacecraft, its instruments measured tiny dust grains that compose the innermost D-ring of Saturn. The nanometer-sized dust experiences collisions with exospheric (upper atmosphere) hydrogen and molecular hydrogen, which forces it to fall from the ring into the ionosphere and lower atmosphere. We used the Magnetospheric Imaging Instrument to detect and characterize this dust transport and also found that diffusion dominates above and near the altitude of peak ionospheric density. This mechanism results in a mass deposition into the equatorial atmosphere of ~5 kilograms per second, constraining the age of the D-ring.
RESUMO
OBJECTIVE: To determine the recurrence rate of gestational diabetes (GDM) during a subsequent pregnancy among women who had GDM during an index pregnancy and to identify factors associated with the probability of recurrence RESEARCH DESIGN AND METHODS: A retrospective longitudinal study was performed in Nova Scotia, Canada, of women who were diagnosed as having GDM during a pregnancy between the years of 1980 and 1996 and who had at least one subsequent pregnancy during this time period. When only the index and first subsequent pregnancy were analyzed, the cohort included 651 women. The recurrence rate of GDM in the pregnancy after the pregnancy with the initial diagnosis of GDM was determined. Multivariate regression models were constructed to model the recurrence of GDM in a subsequent pregnancy as functions of potential predictors to estimate RRs and CIs. RESULTS: The rate of recurrence of GDM in the pregnancy subsequent to the index pregnancy was found to the 35.6% (95% CI = 31.9-39.3%). Multivariate regression models showed that infant birth weight in the index pregnancy and maternal prepregnancy weight before the subsequent pregnancy were predictive of recurrent GDM. CONCLUSIONS: In this large cohort of women, slightly more than one-third of the subjects had diabetes in a subsequent pregnancy, which is consistent with recurrence rates in other predominately white populations. Strategies to reduce the occurrence of neonatal macrosomia and maternal prepregnancy obesity may help lower the rate of recurrence of GDM.
Assuntos
Diabetes Gestacional/epidemiologia , Diabetes Gestacional/fisiopatologia , Análise de Variância , Peso ao Nascer , Peso Corporal , Aleitamento Materno , Estudos de Coortes , Parto Obstétrico , Diabetes Mellitus/epidemiologia , Feminino , Teste de Tolerância a Glucose , Humanos , Recém-Nascido , Estudos Longitudinais , Análise Multivariada , Nova Escócia/epidemiologia , Gravidez , Recidiva , Análise de Regressão , Estudos Retrospectivos , Fatores de Risco , FumarRESUMO
PURPOSE: To describe and evaluate a new statistical technique for detecting topographic changes in the optic disc and peripapillary retina measured with confocal scanning laser tomography. METHODS: The 256x256-pixel array of topographic height values obtained with each image from the Heidelberg Retina Tomograph (Heidelberg Engineering, Heidelberg, Germany) was divided into an array of 64x64 superpixels, where each superpixel contained 16 (i.e., 4x4) pixels. An analysis of variance technique was developed to analyze each superpixel with three baseline and three follow-up images. The performance of the technique was tested with and without adjustment for spatial correlation of topographic values using computer simulations and with real data from a normal control subject and a patient with progressive glaucomatous disc change. RESULTS: Computer simulation with fixed population means and variance, and varying spatial correlation showed a monotonically increasing number of superpixels with significant test results (false positives), with 20% false-positives when the spatial correlation was 0.8 (the approximate median value in real patient data). The number of false-positive results was similar (17%) in serial images of a normal subject. When corrected for spatial correlation, the number of false-positives was independent of the level of spatial correlation and remained at the expected value of less than 5% in both simulations and real data. Although the number of significant test results in the patient with progressive glaucoma decreased after correction for spatial correlation, the change was readily apparent. Statistical power to detect mean differences in topographic values ranging from 0.5 to 4.0 SDs in computer simulation showed low power for changes of 1 SD or less, but increased dramatically with larger changes. CONCLUSIONS: This technique has a high level of sensitivity to detect changes in the optic disc while maintaining a high level of specificity.
Assuntos
Técnicas de Diagnóstico Oftalmológico , Glaucoma de Ângulo Aberto/diagnóstico , Disco Óptico/patologia , Doenças do Nervo Óptico/diagnóstico , Retina/patologia , Tomografia/métodos , Simulação por Computador , Reações Falso-Positivas , Humanos , Microscopia Confocal , Modelos Estatísticos , Valor Preditivo dos Testes , Sensibilidade e EspecificidadeRESUMO
We report measurements of energetic (>40 kiloelectron volts) charged particles on Voyager 1 from the interface region between the heliosheath, dominated by heated solar plasma, and the local interstellar medium, which is expected to contain cold nonsolar plasma and the galactic magnetic field. Particles of solar origin at Voyager 1, located at 18.5 billion kilometers (123 astronomical units) from the Sun, decreased by a factor of >10(3) on 25 August 2012, while those of galactic origin (cosmic rays) increased by 9.3% at the same time. Intensity changes appeared first for particles moving in the azimuthal direction and were followed by those moving in the radial and antiradial directions with respect to the solar radius vector. This unexpected heliospheric "depletion region" may form part of the interface between solar plasma and the galaxy.