Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 61(6): 2686-2696, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048230

RESUMO

In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. Most notably, RMG can now generate heterogeneous catalysis models in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release includes parallelization for faster model generation and a new molecule isomorphism approach to improve computational performance. RMG has also been updated to use Python 3, ensuring compatibility with the latest cheminformatics and machine learning packages. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.


Assuntos
Quimioinformática , Software , Cinética , Aprendizado de Máquina
2.
J Phys Chem A ; 123(10): 2142-2152, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30758953

RESUMO

Because collecting precise and accurate chemistry data is often challenging, chemistry data sets usually only span a small region of chemical space, which limits the performance and the scope of applicability of data-driven models. To address this issue, we integrated an active learning machine with automatic ab initio calculations to form a self-evolving model that can continuously adapt to new species appointed by the users. In the present work, we demonstrate the self-evolving concept by modeling the formation enthalpies of stable closed-shell polycyclic species calculated at the B3LYP/6-31G(2df,p) level of theory. By combining a molecular graph convolutional neural network with a dropout training strategy, the model we developed can predict density functional theory (DFT) enthalpies for a broad range of polycyclic species and assess the quality of each predicted value. For the species which the current model is uncertain about, the automatic ab initio calculations provide additional training data to improve the performance of the model. For a test set composed of 2858 cyclic and polycyclic hydrocarbons and oxygenates, the enthalpies predicted by the model agree with the reference DFT values with a root-mean-square error of 2.62 kcal/mol. We found that a model originally trained on hydrocarbons and oxygenates can broaden its prediction coverage to nitrogen-containing species via an active learning process, suggesting that the continuous learning strategy is not only able to improve the model accuracy but is also capable of expanding the predictive capacity of a model to unseen species domains.

3.
Protein Sci ; 22(7): 929-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649589

RESUMO

A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions.


Assuntos
Algoritmos , Enzimas/química , Enzimas/metabolismo , Modelos Químicos , Sítios de Ligação , Biologia Computacional/métodos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA