Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 949
Filtrar
1.
Mol Cell ; 69(2): 279-291.e5, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351847

RESUMO

Sustained energy starvation leads to activation of AMP-activated protein kinase (AMPK), which coordinates energy status with numerous cellular processes including metabolism, protein synthesis, and autophagy. Here, we report that AMPK phosphorylates the histone methyltransferase EZH2 at T311 to disrupt the interaction between EZH2 and SUZ12, another core component of the polycomb repressive complex 2 (PRC2), leading to attenuated PRC2-dependent methylation of histone H3 at Lys27. As such, PRC2 target genes, many of which are known tumor suppressors, were upregulated upon T311-EZH2 phosphorylation, which suppressed tumor cell growth both in cell culture and mouse xenografts. Pathologically, immunohistochemical analyses uncovered a positive correlation between AMPK activity and pT311-EZH2, and higher pT311-EZH2 correlates with better survival in both ovarian and breast cancer patients. Our finding suggests that AMPK agonists might be promising sensitizers for EZH2-targeting cancer therapies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Animais , Carcinogênese/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Oncogenes , Neoplasias Ovarianas/metabolismo , Fosforilação , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Fatores de Transcrição , Regulação para Cima
2.
Proc Natl Acad Sci U S A ; 119(16): e2113518119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412900

RESUMO

Fear is essential for survival, but excessive anxiety behavior is debilitating. Anxiety disorders affecting millions of people are a global health problem, where new therapies and targets are much needed. Deep brain stimulation (DBS) is established as a therapy in several neurological disorders, but is underexplored in anxiety disorders. The lateral hypothalamus (LH) has been recently revealed as an origin of anxiogenic brain signals, suggesting a target for anxiety treatment. Here, we develop and validate a DBS strategy for modulating anxiety-like symptoms by targeting the LH. We identify a DBS waveform that rapidly inhibits anxiety-implicated LH neural activity and suppresses innate and learned anxiety behaviors in a variety of mouse models. Importantly, we show that the LH DBS displays high temporal and behavioral selectivity: Its affective impact is fast and reversible, with no evidence of side effects such as impaired movement, memory loss, or epileptic seizures. These data suggest that acute hypothalamic DBS could be a useful strategy for managing treatment-resistant anxiety disorders.


Assuntos
Transtornos de Ansiedade , Estimulação Encefálica Profunda , Região Hipotalâmica Lateral , Animais , Transtornos de Ansiedade/terapia , Estimulação Encefálica Profunda/métodos , Camundongos , Orexinas/antagonistas & inibidores , Orexinas/fisiologia
3.
Differentiation ; 138: 100789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896972

RESUMO

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Osteoclastos , Osteoprotegerina , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Trifosfato de Adenosina/metabolismo , Camundongos , Conexina 43/metabolismo , Conexina 43/genética , Fusão Celular , Antígeno CD47/metabolismo , Antígeno CD47/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas do Tecido Nervoso
4.
Nano Lett ; 24(33): 10348-10354, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109804

RESUMO

Carrier transport capacity with high mobility and long-range diffusion length holds particular significance for the advancement of modern optoelectronic devices. Herein, we have unveiled the carrier dynamics and transport properties of a pristine violet phosphorus (VP) nanosheet by a transient absorption microscopy. Under the excitation (2.41 eV) above the exciton band, two photoinduced absorption peaks with the energy difference of approximately 520 meV emerge within a broadband transient absorption background which originates from the prompt generation of free carriers and the concomitant formation of excitons (lifetime of 467.21 ps). This observation is consistent with the established band-edge model of VP. Intriguingly, we have determined the ambipolar diffusion coefficient and mobility of VP to be approximately 47.32 cm2·s-1 and 1798 cm2·V-1·s-1, respectively, which further indicate a long-range carrier transport of approximately 2.10 µm. This work unveils the significant carrier transport capacity of VP, highlighting its potential for future optoelectronic and excitonic applications.

5.
Funct Integr Genomics ; 24(4): 118, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935217

RESUMO

Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genômica , Multiômica
6.
Funct Integr Genomics ; 24(1): 19, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265702

RESUMO

The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Microambiente Tumoral , Análise de Sequência de RNA , Imunoterapia , Adenosina
7.
Am J Gastroenterol ; 119(4): 700-711, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929952

RESUMO

INTRODUCTION: Portal hypertension progression can be relieved after controlling the etiology of liver cirrhosis. Whether beta-blockers could additionally enhance the effects during treatment, particularly for small esophageal varices (EV), was unclear. This study aims to assess the efficacy of add-on carvedilol to delay EV progression during anti-hepatitis B virus (HBV) treatment in HBV-related cirrhosis. METHODS: This randomized controlled trial enrolled patients with virologically suppressed HBV-compensated cirrhosis and small/medium EV. The participants were randomly assigned to receive nucleos(t)ide analog (NUC) or carvedilol 12.5 mg plus NUC (1:1 allocation ratio). The primary end point was the progression rate of EV at 2 years of follow-up. RESULTS: A total of 238 patients (small EV, 77.3%) were randomized into 119 NUC and 119 carvedilol plus NUC (carvedilol [CARV] combination group). Among them, 205 patients (86.1%) completed paired endoscopies. EV progression rate was 15.5% (16/103) in the NUC group and 12.7% (13/102) in the CARV combination group (relative risk = 0.79, 95% confidence interval 0.36-1.75, P = 0.567). Subgroup analysis on medium EV showed the CARV combination group had a more favorable effect in promoting EV regression (43.5% vs 13.1%, P = 0.022) than NUC alone, but not in small cases ( P = 0.534). The incidence of liver-related events (decompensation, hepatocellular carcinoma, or death/liver transplantation) within 2 years was similar between the 2 groups (11.2% vs 10.4%, P = 0.881). DISCUSSION: The overall results did not show statistically significant differences between the added carvedilol strategy and NUC monotherapy in preventing EV progression in patients with virologically suppressed HBV-compensated cirrhosis. However, the carvedilol-added approach might offer improved outcomes specifically for patients with medium EV (NCT03736265).


Assuntos
Vírus da Hepatite B , Neoplasias Hepáticas , Humanos , Carvedilol/uso terapêutico , Antivirais/uso terapêutico , Cirrose Hepática/tratamento farmacológico
8.
Small ; : e2401194, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984765

RESUMO

High-sensitive uncooled mid-wave infrared (MWIR) photodetection with fast speed is highly desired for biomedical imaging, optical communication, and night vision technology. Low-dimensional materials with low dark current and broadband photoresponse hold great promise for use in MWIR detection. Here, this study reports a high-performance MWIR photodetector based on a titanium trisulfide (TiS3) nanoribbon. This device demonstrates an ultra-broadband photoresponse ranging from the visible spectrum to the MWIR spectrum (405-4275 nm). In the MWIR spectral range, the photodetector achieves competitive high photoresponsivity (R) of 21.1 A W-1, and an impressive specific detectivity (D*) of 5.9 × 1010 cmHz1/2 W-1 in ambient air. Remarkably, the photoresponse speed in the MWIR with τr = 1.3 ms and τd = 1.5 ms is realized which is much faster than the thermal time constant of 15 ms. These findings pave the way for highly sensitive, room-temperature MWIR photodetectors with exceptionally fast response speed.

9.
Chembiochem ; : e202400732, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322624

RESUMO

Guided by molecular networking based on single-molecule stretching assay, an unprecedented pyranonaphthoquinone, methyl kalafunginate (1) and five known compounds 2-6 were isolated from Streptomyces tanashiensis DSM 731. Compound 1 was characterized through a combination of spectroscopic techniques, including 1D and 2D NMR analysis, ECD calculation, and X-ray crystallography. Interestingly, we discovered that compound 1 was spontaneously converted from kalafungin (4) in methanol solution. All isolated compounds were assessed for their cytotoxic potential against a panel of five human cancer cell lines: A549, HepG2, BxPC-3, SW620, and C4-2B. Compounds 1, 2, 4, and 5 exhibited remarkable cytotoxicity with IC50 values below 2.382 µM, suggesting their potential as promising anticancer agents. These findings highlight the significance of using a combined approach of single-molecule stretching assays and molecular networking for efficiently discovering novel natural products with potential therapeutic applications.

10.
J Transl Med ; 22(1): 335, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589907

RESUMO

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
11.
J Transl Med ; 22(1): 720, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103842

RESUMO

BACKGROUND: Fatigue is one of the most common neurological symptoms reported post coronavirus disease 2019 (COVID-19) infection. In order to establish effective early intervention strategies, more emphasis should be placed on the correlation between fatigue and cortical neurophysiological changes, especially in healthcare workers, who are at a heightened risk of COVID-19 infection. METHODS: A prospective cohort study was conducted involving 29 COVID-19 medical workers and 24 healthy controls. The assessment included fatigue, sleep and health quality, psychological status, and physical capacity. Functional near-infrared spectroscopy (fNIRS) was employed to detect activation of brain regions. Bilateral primary motor cortex (M1) excitabilities were measured using single- and paired-pulse transcranial magnetic stimulation. Outcomes were assessed at 1, 3, and 6 months into the disease course. RESULTS: At 1-month post-COVID-19 infection, 37.9% of patients experienced severe fatigue symptoms, dropping to 10.3% at 3 months. Interestingly, the remarkable decreased activation/excitability of bilateral prefrontal lobe (PFC) and M1 were closely linked to fatigue symptoms after COVID-19. Notably, greater increase in M1 region excitability correlated with more significant fatigue improvement. Re-infected patients exhibited lower levels of brain activation and excitability compared to single-infection patients. CONCLUSIONS: Both single infection and reinfection of COVID-19 lead to decreased activation and excitability of the PFC and M1. The degree of excitability improvement in the M1 region correlates with a greater recovery in fatigue. Based on these findings, targeted interventions to enhance and regulate the excitability of M1 may represent a novel strategy for COVID-19 early rehabilitation. TRIAL REGISTRATION: The Ethics Review Committee of Xijing Hospital, No. KY20232051-F-1; www.chictr.org.cn , ChiCTR2300068444.


Assuntos
COVID-19 , Fadiga , Pessoal de Saúde , Córtex Motor , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , COVID-19/fisiopatologia , Fadiga/fisiopatologia , Masculino , Feminino , Estudos Longitudinais , Adulto , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Motor/fisiopatologia , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho , Estudos de Coortes
12.
Opt Lett ; 49(9): 2281-2284, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691699

RESUMO

We propose to realize a long range topography by dispersion unmatched spectral-domain interferometry based on virtually imaged phased array (VIPA) modes. By filtering the continuous spectrum of a supercontinuum source through a side-entrance Fabry-Perot etalon configured at two input angles, two groups of VIPA modes are generated. A method based on unmatched dispersion is proposed for non-aliasing reconstruction of the true depth from the interference spectrum under-sampled at two groups of VIPA modes. With the high spectral resolution provided by the VIPA modes instead of the grating-based spectrometer, only a 10 dB falloff in sensitivity over a range of 10 mm was demonstrated. The feasibility of the proposed method was confirmed by topography of a sample of gauge blocks and a model of three-dimensional (3D) printed tooth. The occlusal surface of the tooth model was further quantitatively evaluated, demonstrating its potential application in long range 3D topography.

13.
BMC Cancer ; 24(1): 7, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167018

RESUMO

OBJECTION: Investigating the key genes and mechanisms that influence stemness in lung adenocarcinoma. METHODS: First, consistent clustering analysis was performed on lung adenocarcinoma patients using stemness scoring to classify them. Subsequently, WGCNA was utilized to identify key modules and hub genes. Then, machine learning methods were employed to screen and identify the key genes within these modules. Lastly, functional analysis of the key genes was conducted through cell scratch assays, colony formation assays, transwell migration assays, flow cytometry cell cycle analysis, and xenograft tumor models. RESULTS: First, two groups of patients with different stemness scores were obtained, where the high stemness score group exhibited poor prognosis and immunotherapy efficacy. Next, LASSO regression analysis and random forest regression were employed to identify genes (PBK, RACGAP1) associated with high stemness scores. RACGAP1 was significantly upregulated in the high stemness score group of lung adenocarcinoma and closely correlated with clinical pathological features, poor overall survival (OS), recurrence-free survival (RFS), and unfavorable prognosis in lung adenocarcinoma patients. Knockdown of RACGAP1 suppressed the migration, proliferation, and tumor growth of cancer cells. CONCLUSION: RACGAP1 not only indicates poor prognosis and limited immunotherapy benefits but also serves as a potential targeted biomarker influencing tumor stemness.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Ciclo Celular/genética , Divisão Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico
14.
Anal Biochem ; 696: 115672, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293645

RESUMO

The integration of fiber optics and plasmonic sensors is promising to improve the practical usability over conventional bulky sensors and systems. To achieve high sensitivity, it typically requires fabrication of well-defined plasmonic nanostructures on optical fibers, which greatly increases the cost and complexity of the sensors. Here, we present a fiber-optic sensor system by using chemical absorption of gold nanoparticles and a replaceable configuration. By functioning gold nanoparticles with aptamers or antibodies, we demonstrate the applications in chemical sensing using two different modes. Measuring shift in resonance wavelength enables the Pb2+ detection with a high linearity and a limit of detection of 0.097 nM, and measuring absorption peak amplitude enables the detection of E. coli in urinary tract infection with a dynamic range between 103 to 108 CFU/mL. The high sensitivity, simple fabrication and disposability of this sensing approach could pave the way for point-of-care testing with fiber-optic plasmonic sensors.

15.
PLoS Biol ; 19(8): e3001304, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437534

RESUMO

Tumor necrosis factor receptor-1 (TNFR1) signaling, apart from its pleiotropic functions in inflammation, plays a role in embryogenesis as deficiency of varieties of its downstream molecules leads to embryonic lethality in mice. Caspase-8 noncleavable receptor interacting serine/threonine kinase 1 (RIPK1) mutations occur naturally in humans, and the corresponding D325A mutation in murine RIPK1 leads to death at early midgestation. It is known that both the demise of Ripk1D325A/D325A embryos and the death of Casp8-/- mice are initiated by TNFR1, but they are mediated by apoptosis and necroptosis, respectively. Here, we show that the defects in Ripk1D325A/D325A embryos occur at embryonic day 10.5 (E10.5), earlier than that caused by Casp8 knockout. By analyzing a series of genetically mutated mice, we elucidated a mechanism that leads to the lethality of Ripk1D325A/D325A embryos and compared it with that underlies Casp8 deletion-mediated lethality. We revealed that the apoptosis in Ripk1D325A/D325A embryos requires a scaffold function of RIPK3 and enzymatically active caspase-8. Unexpectedly, caspase-1 and caspase-11 are downstream of activated caspase-8, and concurrent depletion of Casp1 and Casp11 postpones the E10.5 lethality to embryonic day 13.5 (E13.5). Moreover, caspase-3 is an executioner of apoptosis at E10.5 in Ripk1D325A/D325A mice as its deletion extends life of Ripk1D325A/D325A mice to embryonic day 11.5 (E11.5). Hence, an unexpected death pathway of TNFR1 controls RIPK1 D325A mutation-induced lethality at E10.5.


Assuntos
Caspase 8/fisiologia , Desenvolvimento Embrionário , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Caspases/metabolismo , Morte Celular , Camundongos , Cultura Primária de Células , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
16.
Langmuir ; 40(35): 18670-18682, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163637

RESUMO

Water oxidation is an endothermic and kinetics-sluggish reaction; the research of photoanodes with photothermal and cocatalytic properties is of great significance. Herein, BiVO4/CoAl2O4 film photoanodes were studied for solar water splitting through coupling spinel p-type CoAl2O4 nanoparticles on n-type BiVO4 films. Compared to the BiVO4 photoanode, better performance was observed on the BiVO4/CoAl2O4 photoanode during water oxidation. A photocurrent of 3.47 mA/cm2 was produced on the BiVO4/CoAl2O4 photoanode at 1.23 V vs RHE, which is two-fold to the BiVO4 photoanode (1.70 mA/cm2). Additionally, the BiVO4/CoAl2O4 photoanodes showed an acceptable stability for water oxidation. The BiVO4/CoAl2O4 photoanode being of higher water oxidation performance could be attributed to the presence of p-n heterojunction, cocatalytic, and photothermal effects. In specific, under the excitation of λ < 520 nm light, the holes produced in/on BiVO4 can be transferred to CoAl2O4 owing to the p-n heterojunctions of BiVO4/CoAl2O4. Meanwhile, the temperature on the BiVO4/CoAl2O4 photoanode rises quickly up to ∼53 °C under AM 1.5 G irradiation due to the photothermal property of CoAl2O4 through capturing the 520 < λ < 720 nm light. The temperature rising on the BiVO4/CoAl2O4 photoanode improves the cocatalytic activity of CoAl2O4 and modifies the wettability of BiVO4/CoAl2O4 for effective water oxidation.

17.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969153

RESUMO

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Assuntos
Ração Animal , Bass , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucosídeos , Fenóis , Animais , Bass/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fenóis/administração & dosagem , Fenóis/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga , Distribuição Aleatória
18.
Inorg Chem ; 63(5): 2562-2568, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38268414

RESUMO

Layered hybrid perovskites show significant advantages in the field of optoelectronics. However, the low quantum efficiency and complex preparation methods limit their applications. In this work, we developed a series of perovskite powders with a two-dimensional (2D) layered structure of organic-inorganic hybrid metal halides M2CdCl4:x%Mn (M = CH3NH3+, C2H8N+, C3H10N+) via facile mechanochemical methods. The prepared manganese Mn-doped MA2CdCl4 produces orange emission at 605 nm under both 254 and 420 nm excitation, which originates from a dual excitation channel competition mechanism, and its excitation channel could be changed with the increase of Mn2+ ion concentration. Typically, MA2CdCl4:20%Mn powder exhibits high photoluminescence quantum yield (PLQY) close to 90% at 605 nm due to the organic amine ions enlarging the Mn-Mn interlayer distances. In addition, we prepared MA2CdCl4:x%Mn@PVA flexible films, which also exhibit good luminescence at 254 nm excitation and were unexpectedly found to have a better response to Cs+, which could be a candidate for anticounterfeiting applications.

19.
BMC Neurol ; 24(1): 213, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909175

RESUMO

BACKGROUND: After spinal cord injury (SCI), a large number of survivors suffer from severe motor dysfunction (MD). Although the injury site is in the spinal cord, excitability significantly decreases in the primary motor cortex (M1), especially in the lower extremity (LE) area. Unfortunately, M1 LE area-targeted repetitive transcranial magnetic stimulation (rTMS) has not achieved significant motor improvement in individuals with SCI. A recent study reported that the M1 hand area in individuals with SCl contains a compositional code (the movement-coding component of neural activity) that links matching movements from the upper extremities (UE) and the LE. However, the correlation between bilateral M1 hand area excitability and overall functional recovery is unknown. OBJECTIVE: To clarify the changes in the excitability of the bilateral M1 hand area after SCI and its correlation with motor recovery, we aim to specify the therapeutic parameters of rTMS for SCI motor rehabilitation. METHODS: This study is a 12-month prospective cohort study. The neurophysiological and overall functional status of the participants will be assessed. The primary outcomes included single-pulse and paired-pulse TMS. The second outcome included functional near-infrared spectroscopy (fNIRS) measurements. Overall functional status included total motor score, modified Ashworth scale score, ASIA Impairment Scale grade, spinal cord independence measure and modified Barthel index. The data will be recorded for individuals with SCI at disease durations of 1 month, 2 months, 4 months, 6 months and 12 months. The matched healthy controls will be measured during the same period of time after recruitment. DISCUSSION: The present study is the first to analyze the role of bilateral M1 hand area excitability changes in the evaluation and prediction of overall functional recovery (including motor function and activities of daily living) after SCI, which will further expand the traditional theory of the predominant role of M1, optimize the current rTMS treatment, and explore the brain-computer interface design for individuals with SCI. TRIAL REGISTRATION NUMBER: ChiCTR2300068831.


Assuntos
Mãos , Córtex Motor , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Humanos , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Recuperação de Função Fisiológica/fisiologia , Mãos/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiopatologia , Estudos Prospectivos , Potencial Evocado Motor/fisiologia , Masculino , Adulto , Feminino , Estudos de Coortes , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Fish Shellfish Immunol ; 145: 109322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128679

RESUMO

Nocardia seriolae is a severe bacterial pathogen that has seriously affected the development of aquaculture industry. Largemouth bass (Micropterus salmoides) is a commercially significant freshwater fish that suffers a variety of environmental threats, including bacterial pathogens. However, the immune responses and metabolic alterations of largemouth bass to N. seriolae infection remain largely unclear. We discovered that N. seriolae caused pathological alterations in largemouth bass and shifted the transcript of immune-related and apoptotic genes in head kidney after infection. To answer the aforementioned question, a combined transcriptome and metabolome analysis was employed to explore the alterations in genes, metabolites, and metabolic pathways in largemouth bass following bacterial infection. A total of 3579 genes and 1929 metabolites are significant differentially changed in the head kidney post infection. In response to N. seriolae infection, host modifies the PI3K-Akt signaling pathway, TCA cycle, glycolysis, and amino acid metabolism. The integrated analysis of transcriptome and metabolome suggested that with the arginine metabolism pathway as the core, multiple biomarkers (arg gene, arginine) are involved in the antibacterial and immune functions of largemouth bass. Thus, we hypothesized that arginine plays a crucial role in the immune responses of largemouth bass against N. seriolae infection, and increasing arginine levels suitably is beneficial for the host against bacterial infection. Our results shed light on the regulatory mechanism of largemouth bass resistance to N. seriolae infection and contributed to the development of more effective N. seriolae resistance strategies.


Assuntos
Infecções Bacterianas , Bass , Nocardiose , Nocardia , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases/genética , Metaboloma , Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA